Featured Research

from universities, journals, and other organizations

Biological marker of dyslexia discovered: Ability to consistently encode sound undergirds the reading process

Date:
February 19, 2013
Source:
Northwestern University
Summary:
Researchers believe they have discovered a biological marker of dyslexia, a disorder affecting up to one out of 10 children that makes learning to read difficult. The researchers found a systematic relationship between reading ability and the consistency with which the brain encodes sounds. The good news: Response consistency can be improved with auditory training.

Dyslexia. Though learning to read proceeds smoothly for most children, as many as one in 10 is estimated to suffer from dyslexia, a constellation of impairments unrelated to intelligence, hearing or vision that make learning to read a struggle. Now, Northwestern University researchers report they have found a biological mechanism that appears to play an important role in the reading process.
Credit: Lucian Milasan / Fotolia

Though learning to read proceeds smoothly for most children, as many as one in 10 is estimated to suffer from dyslexia, a constellation of impairments unrelated to intelligence, hearing or vision that make learning to read a struggle. Now, Northwestern University researchers report they have found a biological mechanism that appears to play an important role in the reading process.

Related Articles


"We discovered a systematic relationship between reading ability and the consistency with which the brain encodes sounds," says Nina Kraus, Hugh Knowles Professor of Neurobiology, Physiology and Communication. "Unstable Representation of Sound: A Biological Marker of Dyslexia," co-authored by Jane Hornickel, will appear in the Feb. 20 issue of The Journal of Neuroscience.

Recording the automatic brain wave responses of 100 school-aged children to speech sounds, the Northwestern researchers found that the very best readers encoded the sound most consistently while the poorest readers encoded it with the greatest inconsistency. Presumably, the brain's response to sound stabilizes when children learn to successfully connect sounds with their meanings.

Happily biology is not destiny. In prior work in Northwestern's Auditory Neuroscience Laboratory, Kraus and her colleagues found that the inconsistency with which the poorest readers encode sound could be "fixed" through training.

In that study, children with reading impairments were fitted for a year with assistive listening devices that transmitted their teacher's voice directly into their ears. After a year, the children showed improvement not only in reading but also in the consistency with which their brains encoded speech sounds, particularly consonants.

"Use of the devices focused youngsters' brains on the "meaningful" sounds coming from their teacher, diminishing other, extraneous distractions," said Kraus. "After a year of use, the students had honed their auditory systems and no longer required the assistive devices to keep their reading and encoding advantage."

People rarely have difficulty encoding vowel sounds, which are relatively simple and long, according to Kraus. It is consonant sounds -- sounds which are shorter and more acoustically complex -- that are most likely to be incorrectly categorized by the brain.

"Understanding the biological mechanisms of reading puts us in a better position to both understand how normal reading works and to ameliorate it where it goes awry," says Kraus.

"Our results suggest that good readers profit from a stable neural representation of sound, and that children with inconsistent neural responses are likely at a disadvantage when learning to read," Kraus adds. "The good news is that response consistency can be improved with auditory training."

Decades of research from laboratories worldwide have shown that reading ability is associated with auditory skills, including auditory memory and attention, the ability to rhyme sounds and the ability to categorize rapidly occurring sounds.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Hornickel, N. Kraus. Unstable Representation of Sound: A Biological Marker of Dyslexia. Journal of Neuroscience, 2013; 33 (8): 3500 DOI: 10.1523/JNEUROSCI.4205-12.2013

Cite This Page:

Northwestern University. "Biological marker of dyslexia discovered: Ability to consistently encode sound undergirds the reading process." ScienceDaily. ScienceDaily, 19 February 2013. <www.sciencedaily.com/releases/2013/02/130219172159.htm>.
Northwestern University. (2013, February 19). Biological marker of dyslexia discovered: Ability to consistently encode sound undergirds the reading process. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/02/130219172159.htm
Northwestern University. "Biological marker of dyslexia discovered: Ability to consistently encode sound undergirds the reading process." ScienceDaily. www.sciencedaily.com/releases/2013/02/130219172159.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former NFL Players Donate Brains to Science

Former NFL Players Donate Brains to Science

Reuters - US Online Video (Mar. 3, 2015) Super Bowl champions Sidney Rice and Steve Weatherford donate their brains, post-mortem, to scientific research into repetitive brain trauma. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Alzheimer's Protein Plaque Found In 20-Year-Olds

Alzheimer's Protein Plaque Found In 20-Year-Olds

Newsy (Mar. 3, 2015) Researchers found an abnormal protein associated with Alzheimer&apos;s disease in the brains of 20-year-olds. Video provided by Newsy
Powered by NewsLook.com
This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins