Featured Research

from universities, journals, and other organizations

Factoring in the deadly math of cancer

February 21, 2013
Duke Medicine
Researchers are building complex mathematical models to understand cancer's evolution and how to treat it.

Two Duke researchers are focusing on the deadly mathematics behind the mutated genes and damaged cells that drive cancer.

Related Articles

"Cancer is the end result of an accumulation of genetic mutations," says Rick Durrett, a professor of mathematics at Duke. "It can be boiled down into a series of probabilities of whether or not a cell will become mutated, whether the cell will get the correct combination of mutations to become cancerous, and at what rate the cancerous cells continue to divide."

Cervical cancer illustrates his point. Tumors on a woman's cervix develop from a series of mutations associated with chronic infection from human papillomavirus (HPV), which the Center for Disease Control lists as the world's most common sexually transmitted infection.

Epidemiologist Evan Myers, a professor of obstetrics and gynecology at Duke, has created models showing how screening or vaccinating for HPV affects the likelihood of an individual or group getting cervical cancer.

What's needed, Myers says, are better models of the disease's underlying biology.

That's where mathematicians such as Durrett and Marc Ryser, a visiting assistant professor in Duke's math department, enter into the cancer equation. Mathematical models can complement clinical and biological data of the tissue-level effects of HPV, Ryser says. He explains that the mutations and cellular dynamics of the virus are hard to observe and track in real patients, but mathematical models can simulate an infection's progress without sampling a single cell.

"With our model, we can calculate the probability of infected cells continuing to divide and mutate. We can run simulations to see how the disease spreads in an individual and how it could spread to a person's sexual partners," Ryser says.

In the future, he would like to combine these kinds of tissue-level HPV models with the models Myers is developing for entire populations. The models together may let clinicians see "what is possible biologically and if it consistent with what we see clinically," Myers says. "If the models match reality, we could start to use them to make predictions about what transmission or treatments look like in the real world."

Ryser presented his early models on HPV in January as part of a semester-long Duke seminar series called Modeling Cancer. The seminar, which Durrett hosts each week at noon on Friday in Physics 119, is set up so mathematicians from Duke and other universities can discuss their work and build collaborations with clinicians in the medical center. The talks can be viewed live or later online.

Ryser has been collaborating with Myers to learn about the biological issues of HPV and cervical cancer that clinicians don't fully understand, and to factor these into his models. One unresolved question is why more than 80 percent of sexually active women get HPV at least once, but less than 1 percent have problems with persistent infections.

"With mathematical models, we can get a better sense of what we can't see, like the cell of origin where mutations start or when they start," Durrett says. "It's really a different point of view than from doctors who see cancer when it has developed far enough for a patient to have symptoms."

The goal of modeling cancer is "not to design a model and then run off into 'math land' to make abstract calculations that have nothing to do with the real world," Ryser says. Even if mathematicians are able to design correct cancer models, a cure for HPV or cancer may remain elusive. But, Ryser adds, such models could help optimize treatment schedules or dosages, or help determine which individuals get screened or how often they do.

"We want to develop translational models for medicine," he says. "The models are a valuable tool for scientists and clinicians to explore the dynamics related to disease."

Story Source:

The above story is based on materials provided by Duke Medicine. Note: Materials may be edited for content and length.

Cite This Page:

Duke Medicine. "Factoring in the deadly math of cancer." ScienceDaily. ScienceDaily, 21 February 2013. <www.sciencedaily.com/releases/2013/02/130221141121.htm>.
Duke Medicine. (2013, February 21). Factoring in the deadly math of cancer. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/02/130221141121.htm
Duke Medicine. "Factoring in the deadly math of cancer." ScienceDaily. www.sciencedaily.com/releases/2013/02/130221141121.htm (accessed December 22, 2014).

Share This

More From ScienceDaily

More Computers & Math News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Can Bitcoin Survive 2015?

Can Bitcoin Survive 2015?

Newsy (Dec. 22, 2014) Bitcoin's stock has tumbled significantly this year, but more companies now accept it, leading supporters and critics alike to weigh in on its future. Video provided by Newsy
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins