Featured Research

from universities, journals, and other organizations

Plasmonics: A wave without diffraction

Date:
May 22, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Optical computing could benefit from the recent development of a novel electromagnetic wave.

An unusual wave that does not spread out as it travels could become a key component in speedy computer chips that use beams of light to carry and process data. Jiao Lin, a physicist at the A*STAR Singapore Institute of Manufacturing Technology, helped to develop the electromagnetic wave, which can travel some 80 micrometers in a straight line without diffracting.

The wave is formed when light hits the surface of a metal, creating ripples in the sea of electrons there. Under certain conditions, the ripples -- known as surface plasmons -- can couple with the incoming light to create electromagnetic waves that stick tightly to the metal surface as they travel. Known as surface plasmon polaritons, these waves have a shorter wavelength than the light, which makes them more attractive as data carriers.

Although light can zip around a computer much faster than electrons, optical components tend to be much larger than those in conventional circuits -- their size is dictated by the wavelength of the light they handle. Using surface plasmon polaritons offers the best of both worlds, explains Lin, because the signals can travel at the speed of light along metal waveguides that are as compact as conventional circuits. Unfortunately, surface plasmon polaritons diffract as they travel over the metal, which erodes the quality of the signals they carry. Previous attempts to prevent this diffraction were moderately successful, but caused the polaritons to veer off course.

The wave developed by Lin and co-workers is a previously unknown solution to Maxwell's equations, which describe how electromagnetic fields behave. Once the team had formulated a mathematical description of this wave, known as a localized cosine-Gauss beam, Lin helped to turn it into a reality. The team carved two sets of tiny grooves, each roughly 10 micrometers long, into a thin layer of gold stuck to a glass backplate. They slightly angled the grooves to make a chevron pattern (see image).

Shining near-infrared laser light at the grooves generated two surface plasmon polaritons that soon converged and interfered constructively with each other. This resulted in a tightly focused beam that skimmed across the gold without diffracting, covering a much greater distance than previous efforts had achieved. The team tracked the narrow beam as it traveled over the surface using a near-field scanning optical microscope.

Lin says that as well as helping to create faster and more energy efficient computers, the beams could also be used in the laboratory to trap and manipulate nanoparticles.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Lin, J., Dellinger, J., Genevet, P., Cluzel, B., de Fornel, F. & Capasso, F. Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave. Physical Review Letters, 2012

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Plasmonics: A wave without diffraction." ScienceDaily. ScienceDaily, 22 May 2013. <www.sciencedaily.com/releases/2013/05/130522131024.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, May 22). Plasmonics: A wave without diffraction. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/05/130522131024.htm
The Agency for Science, Technology and Research (A*STAR). "Plasmonics: A wave without diffraction." ScienceDaily. www.sciencedaily.com/releases/2013/05/130522131024.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins