Featured Research

from universities, journals, and other organizations

Step closer to custom-building new blood vessels

Date:
July 16, 2013
Source:
Johns Hopkins Medicine
Summary:
Researchers have coaxed stem cells into forming networks of new blood vessels in the laboratory, then successfully transplanted them into mice. The stem cells are made by reprogramming ordinary cells, so the new technique could potentially be used to make blood vessels genetically matched to individual patients and unlikely to be rejected by their immune systems, the investigators say.

Lab-grown human blood vessel networks (red) incorporating into and around mouse networks (green).
Credit: Gerecht lab

Researchers at Johns Hopkins have coaxed stem cells into forming networks of new blood vessels in the laboratory, then successfully transplanted them into mice. The stem cells are made by reprogramming ordinary cells, so the new technique could potentially be used to make blood vessels genetically matched to individual patients and unlikely to be rejected by their immune systems, the investigators say.

The results appear online this week in the Proceedings of the National Academy of Sciences.

"In demonstrating the ability to rebuild a microvascular bed in a clinically relevant manner, we have made an important step toward the construction of blood vessels for therapeutic use," says Sharon Gerecht, Ph.D., an associate professor in the Johns Hopkins University Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center and Institute for NanoBioTechnology. "Our findings could yield more effective treatments for patients afflicted with burns, diabetic complications and other conditions in which vasculature function is compromised."

Gerecht's research group and others had previously grown blood vessels in the laboratory using stem cells, but barriers remain to efficiently producing the vessels and using them to treat patients.

For the current study, the group focused on streamlining the new growth process. Where other experiments used chemical cues to get stem cells to form cells of a single type, or to mature into a smorgasbord of cell types that the researchers would then sort through, graduate student Sravanti Kusuma devised a way to get the stem cells to form the two cell types needed to build new blood vessels -- and only those types. "It makes the process quicker and more robust if you don't have to sort through a lot of cells you don't need to find the ones you do, or grow two batches of cells," she says.

A second difference from previous experiments was that instead of using adult stem cells derived from cord blood or bone marrow to construct the network of vessels, Gerecht's group teamed with Linzhao Cheng, Ph.D., a professor in the Institute for Cell Engineering, to use induced pluripotent stem cells as their starting point. Since this type of cell is made by reverse-engineering mature cells -- from the skin or blood, for example -- using it means that the resulting blood vessels could be tailor-made for specific patients, Kusuma says. "This is an elegant use of human induced pluripotent stem cells that can form multiple cell types within one kind of tissue or organ and have the same genetic background," Cheng says. "This study showed that in addition to being able to form blood cells and neural cells as previously shown, blood-derived human induced pluripotent stem cells can also form multiple types of vascular network cells."

To grow the vessels, the research team put the stem cells into a scaffolding made of a squishy material called hydrogel. The hydrogel was loaded with chemical cues that nudged the cells to organize into a network of recognizable blood vessels made up of cells that create the network and the type that support and give vessels their structure. This was the first time that blood vessels had been constructed from human pluripotent stem cells in synthetic material.

To learn whether the vessel-infused hydrogel would work inside a living animal, the group implanted it into mice. After two weeks, the lab-grown vessels had integrated with the mice's own vessels, and the hydrogel had begun to biodegrade and disappear as it had been designed to do. "That these vessels survive and function inside a living animal is a crucial step in getting them to medical application," Kusuma says.

One of the next steps, she says, will be to look more closely at the 3-D structures the lab-grown vessels form. Another will be to see whether the vessels can deliver blood to damaged tissues and help them recover.

The study was funded by the American Heart Association, the National Heart, Lung, and Blood Institute (grant numbers F31HL112644, 2R01 HL073781 and R01 HL107938), the National Cancer Institute (grant number U54CA143868) and the National Science Foundation (grant number 1054415).

Other authors on the report were Yu-I Shen, Donny Hanjaya-Putra and Prashant Mali, all of The Johns Hopkins University.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Kusuma, Y.-I. Shen, D. Hanjaya-Putra, P. Mali, L. Cheng, S. Gerecht. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1306562110

Cite This Page:

Johns Hopkins Medicine. "Step closer to custom-building new blood vessels." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716161844.htm>.
Johns Hopkins Medicine. (2013, July 16). Step closer to custom-building new blood vessels. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/07/130716161844.htm
Johns Hopkins Medicine. "Step closer to custom-building new blood vessels." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716161844.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins