Featured Research

from universities, journals, and other organizations

Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities

Date:
October 28, 2013
Source:
Massachusetts Institute of Technology
Summary:
If integrated into adaptive cruise-control systems, a new algorithm could mitigate the type of freeway backup that seems to occur for no reason.

Screen shot from traffic flow simulation. Traffic flow instabilities arise because variations in velocity are magnified as they pass through a lane of traffic.

Everybody's experienced it: a miserable backup on the freeway, which you think must be caused by an accident or construction, but which at some point thins out for no apparent reason.

Related Articles


Such "traffic flow instabilities" have been a subject of scientific study since the 1930s, but although there are a half-dozen different ways to mathematically model them, little has been done to prevent them.

At this month's IEEE Conference on Intelligent Transport Systems, Berthold Horn, a professor in MIT's Department of Electrical Engineering and Computer Science, presented a new algorithm for alleviating traffic flow instabilities, which he believes could be implemented by a variation of the adaptive cruise-control systems that are an option on many of today's high-end cars.

A car with adaptive cruise control uses sensors, such as radar or laser rangefinders, to monitor the speed and distance of the car in front of it. That way, the driver doesn't have to turn the cruise control off when traffic gets backed up: The car will automatically slow when it needs to and return to its programmed speed when possible.

Counterintuitively, a car equipped with Horn's system would also use sensor information about the distance and velocity of the car behind it. A car that stays roughly halfway between those in front of it and behind it won't have to slow down as precipitously if the car in front of it brakes; but it will also be less likely to pass on any unavoidable disruptions to the car behind it. Since the system looks in both directions at once, Horn describes it as "bilateral control."

Traffic flow instabilities arise, Horn explains, because variations in velocity are magnified as they pass through a lane of traffic. "Suppose that you introduce a perturbation by just braking really hard for a moment, then that will propagate upstream and increase in amplitude as it goes away from you," Horn says. "It's kind of a chaotic system. It has positive feedback, and some little perturbation can get it going."

Doing the math

Horn hit upon the notion of bilateral control after suffering through his own share of inexplicable backups on Massachusetts' Interstate 93. Since he's a computer scientist, he built a computer simulation to test it out.

The simulation seemed to bear out his intuition, but to publish, he needed mathematical proof. After a few false starts, he found that bilateral control could be modeled using something called the damped-wave equation, which describes how oscillations, such as waves propagating through a heavy fluid, die out over distance. Once he had a mathematical description of his dynamic system, he used techniques standard in control theory -- in particular, the Lyapunov function -- to demonstrate that his algorithm could stabilize it.

Horn's proof accounts for several variables that govern real-life traffic flow, among them drivers' reaction times, their desired speed, and their eagerness to reach that speed -- how rapidly they accelerate when they see gaps opening in front of them. Horn found that the literature on traffic flow instabilities had proposed a range of values for all those variables, and within those ranges, his algorithm works very efficiently. But in fact, for any plausible set of values, the algorithm still works: All that varies is how rapidly it can smooth out disruptions.

Horn's algorithm works, however, only if a large percentage of cars are using it. And laser rangefinders and radar systems are relatively costly pieces of hardware, which is one of the reasons that adaptive cruise control has remained a high-end option.

Digital cameras, on the other hand, have become extremely cheap, and many cars already use them to monitor drivers' blind spots. "There are several techniques," Horn says. "One is using binocular stereo, where you have two cameras, and that allows you to get distance as well as relative velocity. The disadvantage of that is, well, two cameras, plus alignment. If they ever get out of alignment, you have to recalibrate them."

Time to impact

Horn's chief area of research is computer vision, and his group previously published work on extracting information about distance and velocity from a single camera. "We've developed monocular methods that allow you to very accurately get the ratio of distance to velocity," Horn says -- a ratio known in transportation studies as "time to contact," since it captures information about the imminence of collision. "Strangely, while it's, from a monocular camera, difficult to get distance accurately without additional information, and it's difficult to get velocity accurately without additional information, the ratio can be had." In ongoing work, Horn is investigating whether his algorithm can be adapted so that it uses only information about time to contact, rather than absolute information about speed and distance.

Simulation of traffic: http://people.csail.mit.edu/bkph/movies/combined_6.gif A sample run of Horn's simulator (complete with brake lights). The system starts out in a stable state, but backups begin about 30 seconds in, even though all the cars are executing algorithms typical of current adaptive-cruise-control systems. The bilateral-control algorithm is switched on at the one-minute mark.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Larry Hardesty. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities." ScienceDaily. ScienceDaily, 28 October 2013. <www.sciencedaily.com/releases/2013/10/131028141549.htm>.
Massachusetts Institute of Technology. (2013, October 28). Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/10/131028141549.htm
Massachusetts Institute of Technology. "Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities." ScienceDaily. www.sciencedaily.com/releases/2013/10/131028141549.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins