Featured Research

from universities, journals, and other organizations

Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities

Date:
October 28, 2013
Source:
Massachusetts Institute of Technology
Summary:
If integrated into adaptive cruise-control systems, a new algorithm could mitigate the type of freeway backup that seems to occur for no reason.

Screen shot from traffic flow simulation. Traffic flow instabilities arise because variations in velocity are magnified as they pass through a lane of traffic.

Everybody's experienced it: a miserable backup on the freeway, which you think must be caused by an accident or construction, but which at some point thins out for no apparent reason.

Such "traffic flow instabilities" have been a subject of scientific study since the 1930s, but although there are a half-dozen different ways to mathematically model them, little has been done to prevent them.

At this month's IEEE Conference on Intelligent Transport Systems, Berthold Horn, a professor in MIT's Department of Electrical Engineering and Computer Science, presented a new algorithm for alleviating traffic flow instabilities, which he believes could be implemented by a variation of the adaptive cruise-control systems that are an option on many of today's high-end cars.

A car with adaptive cruise control uses sensors, such as radar or laser rangefinders, to monitor the speed and distance of the car in front of it. That way, the driver doesn't have to turn the cruise control off when traffic gets backed up: The car will automatically slow when it needs to and return to its programmed speed when possible.

Counterintuitively, a car equipped with Horn's system would also use sensor information about the distance and velocity of the car behind it. A car that stays roughly halfway between those in front of it and behind it won't have to slow down as precipitously if the car in front of it brakes; but it will also be less likely to pass on any unavoidable disruptions to the car behind it. Since the system looks in both directions at once, Horn describes it as "bilateral control."

Traffic flow instabilities arise, Horn explains, because variations in velocity are magnified as they pass through a lane of traffic. "Suppose that you introduce a perturbation by just braking really hard for a moment, then that will propagate upstream and increase in amplitude as it goes away from you," Horn says. "It's kind of a chaotic system. It has positive feedback, and some little perturbation can get it going."

Doing the math

Horn hit upon the notion of bilateral control after suffering through his own share of inexplicable backups on Massachusetts' Interstate 93. Since he's a computer scientist, he built a computer simulation to test it out.

The simulation seemed to bear out his intuition, but to publish, he needed mathematical proof. After a few false starts, he found that bilateral control could be modeled using something called the damped-wave equation, which describes how oscillations, such as waves propagating through a heavy fluid, die out over distance. Once he had a mathematical description of his dynamic system, he used techniques standard in control theory -- in particular, the Lyapunov function -- to demonstrate that his algorithm could stabilize it.

Horn's proof accounts for several variables that govern real-life traffic flow, among them drivers' reaction times, their desired speed, and their eagerness to reach that speed -- how rapidly they accelerate when they see gaps opening in front of them. Horn found that the literature on traffic flow instabilities had proposed a range of values for all those variables, and within those ranges, his algorithm works very efficiently. But in fact, for any plausible set of values, the algorithm still works: All that varies is how rapidly it can smooth out disruptions.

Horn's algorithm works, however, only if a large percentage of cars are using it. And laser rangefinders and radar systems are relatively costly pieces of hardware, which is one of the reasons that adaptive cruise control has remained a high-end option.

Digital cameras, on the other hand, have become extremely cheap, and many cars already use them to monitor drivers' blind spots. "There are several techniques," Horn says. "One is using binocular stereo, where you have two cameras, and that allows you to get distance as well as relative velocity. The disadvantage of that is, well, two cameras, plus alignment. If they ever get out of alignment, you have to recalibrate them."

Time to impact

Horn's chief area of research is computer vision, and his group previously published work on extracting information about distance and velocity from a single camera. "We've developed monocular methods that allow you to very accurately get the ratio of distance to velocity," Horn says -- a ratio known in transportation studies as "time to contact," since it captures information about the imminence of collision. "Strangely, while it's, from a monocular camera, difficult to get distance accurately without additional information, and it's difficult to get velocity accurately without additional information, the ratio can be had." In ongoing work, Horn is investigating whether his algorithm can be adapted so that it uses only information about time to contact, rather than absolute information about speed and distance.

Simulation of traffic: http://people.csail.mit.edu/bkph/movies/combined_6.gif A sample run of Horn's simulator (complete with brake lights). The system starts out in a stable state, but backups begin about 30 seconds in, even though all the cars are executing algorithms typical of current adaptive-cruise-control systems. The bilateral-control algorithm is switched on at the one-minute mark.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Larry Hardesty. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities." ScienceDaily. ScienceDaily, 28 October 2013. <www.sciencedaily.com/releases/2013/10/131028141549.htm>.
Massachusetts Institute of Technology. (2013, October 28). Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/10/131028141549.htm
Massachusetts Institute of Technology. "Eliminating unexplained traffic jams: New algorithm to alleviate traffic flow instabilities." ScienceDaily. www.sciencedaily.com/releases/2013/10/131028141549.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins