Featured Research

from universities, journals, and other organizations

Lifting fusion power onto an (optimized) pedestal

Date:
November 13, 2013
Source:
American Physical Society
Summary:
New technique that will help optimize the transport barrier, or pedestal, in fusion plasmas, which will be key to increasing future fusion power performance.

This is a typical structure of a peeling-ballooning mode in the DIII-D tokamak, calculated by ELITE.
Credit: Philip Snyder

In a collaborative effort, researchers in the United States and the United Kingdom have developed a new technique that will help them optimize the transport barrier, or pedestal, in fusion plasmas, which will be key to increasing future fusion power performance.

This work has been recognized with the 2013 APS John Dawson Award for Excellence in Plasma Physics Research.

The core of fusion plasmas must reach temperatures over 100 million degrees to enable ample fusion power production. But the far edge plasma, which is in contact with material surfaces, must remain relatively cool. High performance, or "H-mode" operation, is achieved via the formation of an insulating transport barrier in the edge region of the plasma, which lifts the core. This transport barrier acts like the wall of a thermos bottle, separating the very hot plasma core (far hotter than the core of the sun) from a cooler layer of unconfined plasma and the material surfaces. The transport barrier is often referred to as a "pedestal," because it lifts the core plasma up to high temperature and pressure. Generally, the higher the pedestal, the more fusion power will be produced, with predictions for ITER and demonstration magnetic fusion power plants finding that fusion power increases with the square of the pedestal pressure.

Theoretical physicists at General Atomics in San Diego and the University of York in the United Kingdom, working with experimental physicists at the DIII-D tokamak in San Diego, have unveiled key physics that governs the pedestal. One critical finding is that the pedestal is limited by intermediate wavelength instabilities, driven by pressure and current gradients in the pedestal region. These instabilities are known as "peelingballooning" (PB) modes, because they balloon outward and peel off part of the insulating layer of plasma. Extensive studies have clearly identified these modes in tokamak plasmas, and found that the pedestal pressure varies as predicted by PB calculations. Recently, a model known as EPED has been developed, which combines PB calculations with calculated pressure gradient limits resulting from smaller scale instabilities known as kinetic ballooning modes. The EPED model can selfconsistently predict the pressure and the width of the pedestal, and has been extensively tested in hundreds of experimental cases.

Using EPED, it is possible not only to predict the pedestal in existing experiments, but to devise methods for optimizing pedestal and fusion performance. One important technique involves selecting plasma shapes which are strongly stabilizing to PB modes, such as highly elongated "D" shapes. In addition, new experiments have demonstrated that the injection of gases such as neon into the edge plasma can increase collisionality, reducing the current and stabilizing current driven PB modes. Combining these techniques has led to very high pedestal pressure and high overall performance in DIII-D. The same methods are being applied to predicting and optimizing the pedestal in the planned ITER device to enable high fusion performance.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Lifting fusion power onto an (optimized) pedestal." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113143554.htm>.
American Physical Society. (2013, November 13). Lifting fusion power onto an (optimized) pedestal. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/11/131113143554.htm
American Physical Society. "Lifting fusion power onto an (optimized) pedestal." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113143554.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins