Featured Research

from universities, journals, and other organizations

Physicists quantify temperature changes in metal nanowires

Date:
January 21, 2014
Source:
University of Arkansas, Fayetteville
Summary:
Physicists have demonstrated the capability of measuring temperature changes in very small 3-D regions of space.

Using the interaction between light and charge fluctuations in metal nanostuctures called plasmons, physicist have demonstrated the capability of measuring temperature changes in very small 3-D regions of space.

Plasmons can be thought of as waves of electrons in a metal surface, said Joseph B. Herzog, visiting assistant professor of physics at the University of Arkansas, who co-authored a paper detailing the findings that was published Jan. 1 by the journal Nano Letters, a publication of the American Chemical Society.

The paper, titled "Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires," was co-written by Rice University researchers Mark W. Knight and Douglas Natelson.

In the experiments, Herzog fabricated plasmonic nanostructures with electron beam lithography and precisely focused a laser on to a gold nanowire with a scanning optical setup.

"This work measures the change in electrical resistance of a single gold nanowire while it is illuminated with light," Herzog said. "The change in resistance is related to the temperature change of the nanowire. Being able to measure temperature changes at small nanoscale volumes can be difficult, and determining what portion of this temperature change is due to plasmons can be even more challenging.

"By varying the polarization of the light incident on the nanostructures, the plasmonic contribution of the optical heating has been determined and confirmed with computational modeling," he said.

Herzog's publication is in a rapidly growing, specialized area called thermoplasmonics, a sub-field of plasmonics that studies the effects of heat due to plasmons and has been used in applications ranging from cancer treatment to solar energy harvesting.

Herzog combines his research of plasmons with his expertise in nano-optics, which is the nanoscale study of light.

"It's a growing field," he said. "Nano-optics and plasmonics allow you to focus light into smaller regions that are below the diffraction limit of light. A plasmonic nanostructure is like an optical antenna. The plasmon-light interaction makes plasmonics fascinating."


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joseph Bruce Herzog, Mark W. Knight, Douglas Natelson. Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires. Nano Letters, 2014; 140101181917003 DOI: 10.1021/nl403510u

Cite This Page:

University of Arkansas, Fayetteville. "Physicists quantify temperature changes in metal nanowires." ScienceDaily. ScienceDaily, 21 January 2014. <www.sciencedaily.com/releases/2014/01/140121113322.htm>.
University of Arkansas, Fayetteville. (2014, January 21). Physicists quantify temperature changes in metal nanowires. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/01/140121113322.htm
University of Arkansas, Fayetteville. "Physicists quantify temperature changes in metal nanowires." ScienceDaily. www.sciencedaily.com/releases/2014/01/140121113322.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins