Featured Research

from universities, journals, and other organizations

UV light accelerates cancer cells that creep along outside of blood vessels

Date:
March 7, 2014
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
Deadly skin cancer (melanoma) cells spread by creeping along the outside of blood vessels: extravascular metastatic migration (EVMM). Ultraviolet light exposure accelerates EVMM in a mouse model, new research has found. Now researchers are targeting new drugs that slow or stop EVMM, potentially reducing the death rate from melanoma.

Based on the pioneering work of Dr. Claire Lugassy and Dr. Raymond Barnhill at UCLA's Jonsson Comprehensive Cancer Center, a new study provides additional support for a process by which melanoma cells, a deadly form of skin cancer, can spread throughout the body by creeping like tiny spiders along the outside of blood vessels without ever entering the blood stream, and that this process is exacerbated by exposure to ultraviolet (UV) light.

Related Articles


In collaboration with the husband and wife team of Dr. Barnhill, professor of pathology and Dr. Lugassy, associate professor of pathology, the study was published March 6, 2014 in the journal Nature. Lugassy and Barnhill's team at UCLA collaborated with a team from the University of Bonn, Germany, led by Dr. Thomas Tuting.

It is well established that melanoma cells can spread through the blood to accumulate and form new tumors (metastases) in other parts of the body away from the original tumor. Thus, a small skin cancer becomes life-threatening by spreading to the brain, lungs, liver, or other organs.

Lugassy and Barnhill began studying the way cancer, especially melanoma, spreads (metastasizes) more than fifteen years ago, when they conceived and developed a process that they termed extravascular migratory metastasis (EVMM). They found that besides traveling in the bloodstream, melanoma cells could also move along the abluminal, or outside, surface of blood vessels by way of angiotropism, a biological interaction between the cancer cells and the blood vessel cells. Lugassy and Barnhill continue to assemble a body of scientific studies confirming the reality of this metastatic pathway of cancer cells.

With angiotropism and EVMM, the cancer cells may replace a type of cell called a pericyte, which normally resides on the outsides of blood vessels. While imitating the tendril-like pericytes, which Lugassy and Barnhill called pericytic mimicry, the melanoma cells creep along the length of blood vessels like spiders until they reach an organ or other point where they accumulate to form new tumors, "potentially explaining the delay between the detection of the primary cancer and the appearance of distant metastasis," Barnhill said.

"At first our idea was controversial," Lugassy said. "But mounting evidence confirming angiotropism and EVMM has revolutionized the knowledge of how cancer spreads through the body to the point that other scientists have confirmed the process in other solid tumor cell types such as pancreatic cancer."

In this new Nature study, EVMM was observed again by Tuting, Lugassy, Barnhill, and colleagues in a genetically engineered mouse model. The researchers also found that when the mice with melanoma were exposed to ultraviolet radiation (UV light) their immune systems responded with inflammation that accelerated the angiotropism, increasing the amount of EVMM, and leading to more lung metastases in the mice than those not exposed to UV light. This very exciting new study has been performed in the Laboratory for Experimental Dermatology in Bonn, Germany, under the direction of Dr. Tuting. "We have known for a long time that UV radiation is a factor in the development of melanoma," Barnhill said, "but in this study the melanoma was already present in the mice." Tuting observed that UV light provoked inflammation at the site of the tumor, which caused the mouse immune system to attract neutrophils, a type of white blood cell, and the neutrophils promoted angiotropism.

With this knowledge and the confirmation of the works of Lugassy and Barnhill on angiotropism and EVMM, the researchers in the scientific community can now begin looking for a drug target that will interfere with this EVMM process, with the hope of creating a treatment that would stop EVMM. Because the danger of melanoma comes from its metastasis from the skin to the vital organs, being able to slow down or stop metastasis could turn a disease that was often a death sentence into a manageable chronic illness with relatively little risk of death.


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tobias Bald, Thomas Quast, Jennifer Landsberg, Meri Rogava, Nicole Glodde, Dorys Lopez-Ramos, Judith Kohlmeyer, Stefanie Riesenberg, Debby van den Boorn-Konijnenberg, Cornelia Hömig-Hölzel, Raphael Reuten, Benjamin Schadow, Heike Weighardt, Daniela Wenzel, Iris Helfrich, Dirk Schadendorf, Wilhelm Bloch, Marco E. Bianchi, Claire Lugassy, Raymond L. Barnhill, Manuel Koch, Bernd K. Fleischmann, Irmgard Förster, Wolfgang Kastenmüller, Waldemar Kolanus, Michael Hölzel, Evelyn Gaffal, Thomas Tüting. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 2014; 507 (7490): 109 DOI: 10.1038/nature13111

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "UV light accelerates cancer cells that creep along outside of blood vessels." ScienceDaily. ScienceDaily, 7 March 2014. <www.sciencedaily.com/releases/2014/03/140307100050.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2014, March 7). UV light accelerates cancer cells that creep along outside of blood vessels. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2014/03/140307100050.htm
University of California, Los Angeles (UCLA), Health Sciences. "UV light accelerates cancer cells that creep along outside of blood vessels." ScienceDaily. www.sciencedaily.com/releases/2014/03/140307100050.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) — The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) — Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins