Featured Research

from universities, journals, and other organizations

High-speed imaging method captures entire brain activity

Date:
May 18, 2014
Source:
Research Institute of Molecular Pathology
Summary:
A new system to simultaneously image the activity of every neuron in the worm Caenorhabditis elegans, as well as the entire brain of a zebrafish larva, has been used by researchers, offering a more complete picture of nervous system activity than has been previously possible. The findings could be ultimately useful in developing new types of algorithms that simulate functions of the brain and predict behavior.

Head region and the majority of the brain of a zebrafish larvae, as recorded and reconstructed using the light-field microscope.
Credit: Image courtesy of Research Institute of Molecular Pathology

The team used the new system to simultaneously image the activity of every neuron in the worm Caenorhabditis elegans, as well as the entire brain of a zebrafish larva, offering a more complete picture of nervous system activity than has been previously possible.

Related Articles


"The new method is an indispensible tool to understand how the brain represents and processes sensory information and how this leads to cognitive functions and behavior," says physicist Alipasha Vaziri, a joint group leader at the IMP and MFPL and head of the research platform "Quantum Phenomena & Nanoscale Biological Systems" (QuNaBioS) of the University of Vienna, who led the project. "Because of the enormous density of the interconnection of nerve cells in the brain, relevant information is often encoded in states of this densely interconnected network of neurons rather than in the activity of individual neurons."

Vaziri's team developed the brain-mapping method together with researchers in the lab of Edward Boyden, an associate professor of biological engineering and brain and cognitive sciences at the Massachusetts Institute of Technology.

High-speed functional 3-D imaging

Neurons encode information -- sensory data, motor plans, emotional states, and thoughts -- using electrical impulses called action potentials, which provoke calcium ions to stream into each cell as it fires. By engineering model organisms that carry fluorescent proteins which glow when they bind calcium, scientists can visualize this electrical firing of neurons in live animals. However, until now there has been no way to image this neural activity over a large volume, in three dimensions, and at high speed.

Scanning the brain with a laser beam can produce 3-D images of neural activity, but it takes a long time to capture an image because each point must be scanned individually. The research-team wanted to achieve similar 3-D functional images but accelerate the process so they could see neuronal firing, which takes only milliseconds, as it occurs.

The new method is based on a technology known as light-field imaging, which creates 3-D images by capturing angular information of incoming rays of light. In the new paper, the researchers in Vienna and Cambridge built a light-field microscope which was optimized to have single neuron resolution and applied it, for the first time, to imaging of neural activity.

With this kind of microscope, the light emitted by the sample is sent through an array of lenses that refracts the light in different directions. Each point of the sample generates about 400 different points of light, which can then be recombined using a computer algorithm to recreate 3-D structures.

"Compared to existing methods, our new technology allows us to capture neuronal activity in volumes up to a thousand times larger at ten times higher speed," says Robert Prevedel, a postdoc in the Vaziri Lab and first author of the paper. "We have eliminated the need to scan multiple layers, thus the temporal resolution is only limited by the camera sensor and the properties of the molecules themselves." Prevedel built the microscope at the IMP in Vienna. Young-Gyu Yoon, a graduate student at MIT and co-first author, devised the computational strategies that reconstruct the 3-D images.

Neurons in action

The researchers used the technique to image neural activity in the worm C. elegans, the only organism for which the entire neural wiring diagram is known. This one-millimeter worm has 302 neurons, each of which the researchers imaged as the worm performed natural behaviors, such as crawling.

To demonstrate the power of the new technology in higher organisms, they also studied larvae of zebrafish. Their nervous system consists of over 100,000 neurons that fire at a much faster rate, rather like humans. In the tiny larvae, the scientists were able to induce neuronal response to odor stimuli in around 500 neurons and track the nerve signals simultaneously in about 5000 activated neurons.

The findings could be ultimately useful in developing new types of algorithms that simulate functions of the brain and predict behavior. Such models are in high demand in the area of machine learning and object recognition and classification.


Story Source:

The above story is based on materials provided by Research Institute of Molecular Pathology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert Prevedel, Young-Gyu Yoon, Maximilian Hoffmann, Nikita Pak, Gordon Wetzstein, Saul Kato, Tina Schrφdel, Ramesh Raskar, Manuel Zimmer, Edward S Boyden, Alipasha Vaziri. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods, 2014; DOI: 10.1038/nmeth.2964

Cite This Page:

Research Institute of Molecular Pathology. "High-speed imaging method captures entire brain activity." ScienceDaily. ScienceDaily, 18 May 2014. <www.sciencedaily.com/releases/2014/05/140518164242.htm>.
Research Institute of Molecular Pathology. (2014, May 18). High-speed imaging method captures entire brain activity. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2014/05/140518164242.htm
Research Institute of Molecular Pathology. "High-speed imaging method captures entire brain activity." ScienceDaily. www.sciencedaily.com/releases/2014/05/140518164242.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) — British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins