Featured Research

from universities, journals, and other organizations

Chemists Closing In On Commercial Potential Of Alkanes, Room Temperature Alkane Activation Reaction Measured

Date:
February 5, 1998
Source:
Lawrence Berkeley National Laboratory
Summary:
The elusive goal of harnessing the vast potential of one of the earth's most plentiful materials is another step closer to realization. Using ultrafast spectroscopic techniques that provide "stop-action" images within a trillionth of a second, scientists at the U.S. Deparment of Energy's Lawrence Berkeley National Laboratory have obtained the first detailed picture of an alkane-activation reaction at room temperature.

BERKELEY, CA -- The elusive goal of harnessing the vast potential of one of the earth's most plentiful materials is another step closer to realization. Using ultrafast spectroscopic techniques that provide "stop-action" images within a trillionth of a second, scientists at the U.S. Deparment of Energy's Lawrence Berkeley National Laboratory have obtained the first detailed picture of an alkane-activation reaction at room temperature.

Related Articles


Alkanes are compounds of carbon and hydrogen atoms held together by single bonds. The simplest and most abundant is methane, the primary constituent of natural gas. Chemists have long coveted the use of alkanes as environmentally benign feedstock for clean-burning fuels and a host of petrochemicals, including plastics, solvents, synthetic fibers, and pharmaceutical drugs. The problem has been that the bonds between an alkane's carbon and hydrogen atoms are strong enough to render alkanes generally unreactive.

In the early 1980s, Robert Bergman, a chemist in Berkeley Lab's Chemical Sciences Division (CSD) and with the University of California at Berkeley, led the discovery of a group of organometallic complexes --compounds of metal atoms, such as iridium or rhodium, sandwiched between organic molecules with a unique property. Upon irradiation with ultraviolet light, these organometallics were shown to generate a reaction that is able to break the carbon-hydrogen bonds in alkanes and insert metal atoms into the mix, creating new, much more reactive carbon-metal-hydrogen compounds.

Since discovering this alkane-activating reaction, Bergman has been working to better understand it with the ultimate aim of designing a catalytic process that could be used in commercial operations. An obstacle has been that the reaction takes place within 230 nanoseconds (billionths of a second). To slow it down for detailed study, Bergman and Bradley Moore, another chemist who also holds a joint Berkeley Lab-UC Berkeley appointment, conducted experiments in liquefied noble gas solvents under extremely low temperatures.

Since these conditions are far removed from those that might be used in a commercial process, Bergman sought a means of studying the alkane-activating reaction under more realistic conditions. A new collaboration was established with Berkeley Lab scientists Charles Harris and Heinz Frei.

Harris provided a special time-resolved infra-red flash kinetics spectrometer that operates on a femtosecond (millionths of a billionth) time-scale. This enabled the researchers to irradiate alkanes and the organometallic complexes with ultraviolet light and measure the kinetics at room temperature with the compounds dissolved in a hydrocarbon solvent. Frei supplied a Fourier transform infrared spectrometer (FTIR) that allowed the researchers to monitor the carbon-hydrogen activation reaction in the nanosecond regime. These powerul tools made it possible for the scientists to directly establish the time-scale for alkane bond-activation in a room-temperature solution.

Says Bergman, "We now have a detailed picture of the activation reaction. Structures of all the intermediates involved have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated."

Says Harris, an expert in femtosecond studies, "The femtosecond technique used in this alkane reaction study in combination with step-scan infra-red spectroscopy should be applicable to many other problems associated with the reactions of complex molecules."

While the results of this study do not represent a quantum leap toward the goal of converting alkanes into chemically useful products, a good "mechanistic understanding" of the alkane activation reaction brings science closer to that goal.

Collaborating with Bergman, Harris, and Frei on this project were Matthew Asplund, Steven Bromberg, Tianquan Lian, Kenneth Kotz, Bruce McNamara, Haw Yang, Jake Yeston, and M. Wilkens.

The research was reported as the cover story in a recent issue of the journal Science.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "Chemists Closing In On Commercial Potential Of Alkanes, Room Temperature Alkane Activation Reaction Measured." ScienceDaily. ScienceDaily, 5 February 1998. <www.sciencedaily.com/releases/1998/02/980205072833.htm>.
Lawrence Berkeley National Laboratory. (1998, February 5). Chemists Closing In On Commercial Potential Of Alkanes, Room Temperature Alkane Activation Reaction Measured. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/1998/02/980205072833.htm
Lawrence Berkeley National Laboratory. "Chemists Closing In On Commercial Potential Of Alkanes, Room Temperature Alkane Activation Reaction Measured." ScienceDaily. www.sciencedaily.com/releases/1998/02/980205072833.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins