Featured Research

from universities, journals, and other organizations

New Dating Technique May Revise Geologic Time Scale

Date:
March 6, 1998
Source:
University Of Toronto
Summary:
A new technique to determine the age of sedimentary rocks could refine the geologic time scale and provide new insight into global sea level variations.

A new technique to determine the age of sedimentary rocks could refine the geologic time scale and provide new insight into global sea level variations, according to a study in the March 6 issue of Science.

Related Articles


A team of researchers at the University of Toronto and the Universit้ P. et M. Curie in Paris has developed a method to directly date individual grains of a group of clay minerals, called glaucony, that commonly form within sediments while they are being deposited in water.

Using a method developed at U of T-- laser probe argon-argon dating-- the study analysed individual glaucony grains from three bulk samples previously used to construct the geologic time scale. The individual grains yielded ages scattered over millions of years and almost all of the ages were younger than the true age. Only the oldest glaucony grains gave the correct ages, which were known before by comparison to dates from igneous minerals.

Until now, scientists have calculated the ages of sedimentary rocks either by inferring from the ages of surrounding igneous rocks or using potassium-argon dating to obtain average ages on large glaucony samples within the sediment. The glaucony technique has been considered unreliable since the ages arrived at are often a few million years younger than those found in the surrounding igneous rocks, and for this reason some geologists have ignored glauconies in constructing their time scales.

"The ability to look in detail at a sample grain by grain is what proved to be crucial in discovering why glaucony dates come out too young," says Norman Evensen of the U of T's department of physics. "We hope other scientists will now reintegrate glauconies to revise dates and ultimately produce a better geologic time scale."

The study says the different states of evolution among grains in a sample may also indicate variable sea levels. Glaucony forms in shallow sea water and this process slows or stops if the ocean is too shallow or too deep. Consequently some grains may form in a sediment millions of years after it was deposited when sea level conditions above it are appropriate.

"We think we have a way of dating the times at which glaucony formation is going on, which allows us to follow the ups and downs of sea level," says Patrick Smith, another investigator from the department of physics at U of T. "Each grain is a different clock." This new knowledge has applications in the oil exploration industry since the sea level conditions for forming glaucony are similar to those required for the growth of the organisms that eventually turn to oil.

Evensen and Smith worked on the study with lead investigator Derek York of U of T's physics department and Gilles Odin of the Universit้ P. et M. Curie. Funding was provided by the Natural Sciences and Engineering Research Council.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "New Dating Technique May Revise Geologic Time Scale." ScienceDaily. ScienceDaily, 6 March 1998. <www.sciencedaily.com/releases/1998/03/980306043625.htm>.
University Of Toronto. (1998, March 6). New Dating Technique May Revise Geologic Time Scale. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/1998/03/980306043625.htm
University Of Toronto. "New Dating Technique May Revise Geologic Time Scale." ScienceDaily. www.sciencedaily.com/releases/1998/03/980306043625.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Maine Storm Surge Sparks Power Explosions

Raw: Maine Storm Surge Sparks Power Explosions

AP (Apr. 21, 2015) — Police dash cam video shows a series of explosions along the beach in Maine as heavy storm surge soaked electrical transformers. (April 21) Video provided by AP
Powered by NewsLook.com
Japan's Maglev Train Breaks New World Speed Record

Japan's Maglev Train Breaks New World Speed Record

AFP (Apr. 21, 2015) — Japan&apos;s state-of-the-art maglev train clocks a new world speed record in a test run near Mount Fuji, smashing through the 600 kilometre (373 miles) per hour mark, as Tokyo races to sell the technology abroad. Video provided by AFP
Powered by NewsLook.com
Free Home Heating Offered by E-Radiators

Free Home Heating Offered by E-Radiators

Reuters - Innovations Video Online (Apr. 21, 2015) — A revolutionary new radiator design offers Dutch home-owners the chance to get free heating. The e-Radiator is a computer server modified so that the heat it generates can warm a room inside a house. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Completes 6th Leg of Quest to Circumnavigate Globe

Solar Plane Completes 6th Leg of Quest to Circumnavigate Globe

AFP (Apr. 21, 2015) — Solar Impulse 2 lands in the Chinese city of Nanjing, finishing the sixth stage of its landmark 12-leg quest to circumnavigate the globe powered only by the sun. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins