Featured Research

from universities, journals, and other organizations

New Dating Technique May Revise Geologic Time Scale

Date:
March 6, 1998
Source:
University Of Toronto
Summary:
A new technique to determine the age of sedimentary rocks could refine the geologic time scale and provide new insight into global sea level variations.

A new technique to determine the age of sedimentary rocks could refine the geologic time scale and provide new insight into global sea level variations, according to a study in the March 6 issue of Science.

A team of researchers at the University of Toronto and the Universit้ P. et M. Curie in Paris has developed a method to directly date individual grains of a group of clay minerals, called glaucony, that commonly form within sediments while they are being deposited in water.

Using a method developed at U of T-- laser probe argon-argon dating-- the study analysed individual glaucony grains from three bulk samples previously used to construct the geologic time scale. The individual grains yielded ages scattered over millions of years and almost all of the ages were younger than the true age. Only the oldest glaucony grains gave the correct ages, which were known before by comparison to dates from igneous minerals.

Until now, scientists have calculated the ages of sedimentary rocks either by inferring from the ages of surrounding igneous rocks or using potassium-argon dating to obtain average ages on large glaucony samples within the sediment. The glaucony technique has been considered unreliable since the ages arrived at are often a few million years younger than those found in the surrounding igneous rocks, and for this reason some geologists have ignored glauconies in constructing their time scales.

"The ability to look in detail at a sample grain by grain is what proved to be crucial in discovering why glaucony dates come out too young," says Norman Evensen of the U of T's department of physics. "We hope other scientists will now reintegrate glauconies to revise dates and ultimately produce a better geologic time scale."

The study says the different states of evolution among grains in a sample may also indicate variable sea levels. Glaucony forms in shallow sea water and this process slows or stops if the ocean is too shallow or too deep. Consequently some grains may form in a sediment millions of years after it was deposited when sea level conditions above it are appropriate.

"We think we have a way of dating the times at which glaucony formation is going on, which allows us to follow the ups and downs of sea level," says Patrick Smith, another investigator from the department of physics at U of T. "Each grain is a different clock." This new knowledge has applications in the oil exploration industry since the sea level conditions for forming glaucony are similar to those required for the growth of the organisms that eventually turn to oil.

Evensen and Smith worked on the study with lead investigator Derek York of U of T's physics department and Gilles Odin of the Universit้ P. et M. Curie. Funding was provided by the Natural Sciences and Engineering Research Council.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "New Dating Technique May Revise Geologic Time Scale." ScienceDaily. ScienceDaily, 6 March 1998. <www.sciencedaily.com/releases/1998/03/980306043625.htm>.
University Of Toronto. (1998, March 6). New Dating Technique May Revise Geologic Time Scale. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/1998/03/980306043625.htm
University Of Toronto. "New Dating Technique May Revise Geologic Time Scale." ScienceDaily. www.sciencedaily.com/releases/1998/03/980306043625.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) — Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) — 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins