Featured Research

from universities, journals, and other organizations

Researchers From Rockefeller University Develop Novel Method To Fight Cancer

Date:
March 12, 1998
Source:
Rockefeller University
Summary:
Researchers from The Rockefeller University in New York City have developed a new method to fight cancer by using dendritic cells to activate T cells via a new pathway. Reported in the March 5 Nature, the technique offers the promise of new therapies for cancer, AIDS and autoimmune diseases.

Researchers from The Rockefeller University in New York City have developed a new method to fight cancer by using dendritic cells to activate T cells via a new pathway. Reported in the March 5 Nature, the technique offers the promise of new therapies for cancer, AIDS and autoimmune diseases.

"We've shown that dendritic cells can trigger an immune response when cultured with dying cells which carry an antigen, such as proteins from tumors or viruses," says lead author Matthew Albert, B.S., a biomedical fellow in the Laboratory of Cellular Physiology and Immunology at Rockefeller. "This is a new and very potent pathway for activating T cells."

Dendritic cells present antigens --proteins belonging to invaders, mutated pieces of the body's own tissue or normal self-tissue--to the body's T cells, directing responses to either fight or tolerate these molecules. (Tolerance is essential in order to prevent attack against one's own tissues.) Found in most tissues of the body, dendritic cells are among the most efficient antigen-presenting cells in the body.

The immune system recognizes antigens after going through a complex process of education, learning to distinguish self from non-self. Cancer results when the immune system fails to identify tumors as "foreign."

Current treatments for cancer, such as chemotherapy or radiation, target rapidly dividing tumor cells, but lead to serious side-effects because they attack healthy cells as well as tumors. Scientists are looking for more specific ways to attack tumor cells without damaging healthy cells.

One such technique is immunotherapy, which attempts to activate the immune system to recognize tumors as foreign and reject them, based on tumor-specific antigens that are presented on a molecule called MHC, a highly diverse set of proteins responsible for allowing dendritic cells to communicate with T cells. MHC molecules are different in each person, giving each individual a unique immune system. Even the most common MHC molecule is found in only 50 percent of Caucasians. This requires scientists to devise "designer" strategies, determining which antigens are specific to certain tumors and which parts of these proteins are presented on the patient's MHC, to effectively fight cancer.

The new work by Albert and his co-authors, Postdoctoral Associate Birthe Sauter, M.D., and Assistant Professor Nina Bhardwaj, M.D., Ph.D., provides an avenue for using the cell's natural machinery to bypass this requirement, allowing the individual's own dendritic cell to determine the correct part of the tumor antigen that fits their MHC molecules. In a model system, the researchers collected human tissue and infected it with influenza. These cells were triggered to undergo apoptosis (pronounced a-puh-TOE-sis), a type of cell suicide or programmed death. The dying cells were cultured with dendritic cells, making the dendritic cells capable of activating killer T cells that specifically target influenza antigen.

"In other words, the dendritic cells have the ability to acquire antigens from other cells and make them recognizable by T cells," says Bhardwaj, senior author of the paper. "The T cells, in particular the CD8+ killer cells, can then proceed to kill any other cell that contains tumor or viral antigens. It appears that only dendritic cells--and not cells like monocytes--have this ability."

One possible use for this technique is tumor immunotherapy, in which an individual's own tumors--or tumor cell lines containing antigens similar to the person's tumor--could be used a "apoptotic food," says Albert.

"The advantage of this technique is that we could use a person's immune system to choose the appropriate pieces of protein to be presented to the MHC, overcoming the need for designer immunotherapy," continues Albert. "In this way, an individual's own immune system is revved up to attack the tumor based on the expression of tumor-specific antigens."

The diversity of tumors and the fact that each person's immune system is unique complicates tumor immunotherapy. Scientists need to match specific protein fragments derived from a person's tumor to his or her MHC molecule.

"The discovery of this new pathway allows the dendritic cell's natural machinery to decide which pieces of the protein are useful to an individual's immune system," says Albert. "We hope that immunotherapy will be available for people with immune systems that don't match common MHC types."

On a historical note, the dendritic cell was discovered at Rockefeller in 1973 by Henry G. Kunkel Professor Ralph M. Steinman, M.D., and the late Zanvil A. Cohn, M.D.

Funding for this work was provided in part by the National Institute of Allergy and Infectious Diseases, part of the federal government's National Institutes of Health (NIH), and by the NIH Medical Scientist Training Program.

Rockefeller began in 1901 as The Rockefeller Institute for Medical Research, the first U.S. biomedical research center. Rockefeller faculty members have made significant achievements, including the discovery that DNA is the carrier of genetic information and the launching of the scientific field of modern cell biology. The university has ties to 19 Nobel laureates, including the president, Torsten N. Wiesel, M.D., who received the prize in 1981. The university recently created six centers to foster collaborations among scientists to pursue investigations of Alzheimer's disease, of biochemistry and structural biology, of human genetics, of immunology and immune diseases, of sensory neurosciences and of the links between physics and biology.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Researchers From Rockefeller University Develop Novel Method To Fight Cancer." ScienceDaily. ScienceDaily, 12 March 1998. <www.sciencedaily.com/releases/1998/03/980312080219.htm>.
Rockefeller University. (1998, March 12). Researchers From Rockefeller University Develop Novel Method To Fight Cancer. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1998/03/980312080219.htm
Rockefeller University. "Researchers From Rockefeller University Develop Novel Method To Fight Cancer." ScienceDaily. www.sciencedaily.com/releases/1998/03/980312080219.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins