Featured Research

from universities, journals, and other organizations

Researchers From Rockefeller University Develop Novel Method To Fight Cancer

Date:
March 12, 1998
Source:
Rockefeller University
Summary:
Researchers from The Rockefeller University in New York City have developed a new method to fight cancer by using dendritic cells to activate T cells via a new pathway. Reported in the March 5 Nature, the technique offers the promise of new therapies for cancer, AIDS and autoimmune diseases.

Researchers from The Rockefeller University in New York City have developed a new method to fight cancer by using dendritic cells to activate T cells via a new pathway. Reported in the March 5 Nature, the technique offers the promise of new therapies for cancer, AIDS and autoimmune diseases.

"We've shown that dendritic cells can trigger an immune response when cultured with dying cells which carry an antigen, such as proteins from tumors or viruses," says lead author Matthew Albert, B.S., a biomedical fellow in the Laboratory of Cellular Physiology and Immunology at Rockefeller. "This is a new and very potent pathway for activating T cells."

Dendritic cells present antigens --proteins belonging to invaders, mutated pieces of the body's own tissue or normal self-tissue--to the body's T cells, directing responses to either fight or tolerate these molecules. (Tolerance is essential in order to prevent attack against one's own tissues.) Found in most tissues of the body, dendritic cells are among the most efficient antigen-presenting cells in the body.

The immune system recognizes antigens after going through a complex process of education, learning to distinguish self from non-self. Cancer results when the immune system fails to identify tumors as "foreign."

Current treatments for cancer, such as chemotherapy or radiation, target rapidly dividing tumor cells, but lead to serious side-effects because they attack healthy cells as well as tumors. Scientists are looking for more specific ways to attack tumor cells without damaging healthy cells.

One such technique is immunotherapy, which attempts to activate the immune system to recognize tumors as foreign and reject them, based on tumor-specific antigens that are presented on a molecule called MHC, a highly diverse set of proteins responsible for allowing dendritic cells to communicate with T cells. MHC molecules are different in each person, giving each individual a unique immune system. Even the most common MHC molecule is found in only 50 percent of Caucasians. This requires scientists to devise "designer" strategies, determining which antigens are specific to certain tumors and which parts of these proteins are presented on the patient's MHC, to effectively fight cancer.

The new work by Albert and his co-authors, Postdoctoral Associate Birthe Sauter, M.D., and Assistant Professor Nina Bhardwaj, M.D., Ph.D., provides an avenue for using the cell's natural machinery to bypass this requirement, allowing the individual's own dendritic cell to determine the correct part of the tumor antigen that fits their MHC molecules. In a model system, the researchers collected human tissue and infected it with influenza. These cells were triggered to undergo apoptosis (pronounced a-puh-TOE-sis), a type of cell suicide or programmed death. The dying cells were cultured with dendritic cells, making the dendritic cells capable of activating killer T cells that specifically target influenza antigen.

"In other words, the dendritic cells have the ability to acquire antigens from other cells and make them recognizable by T cells," says Bhardwaj, senior author of the paper. "The T cells, in particular the CD8+ killer cells, can then proceed to kill any other cell that contains tumor or viral antigens. It appears that only dendritic cells--and not cells like monocytes--have this ability."

One possible use for this technique is tumor immunotherapy, in which an individual's own tumors--or tumor cell lines containing antigens similar to the person's tumor--could be used a "apoptotic food," says Albert.

"The advantage of this technique is that we could use a person's immune system to choose the appropriate pieces of protein to be presented to the MHC, overcoming the need for designer immunotherapy," continues Albert. "In this way, an individual's own immune system is revved up to attack the tumor based on the expression of tumor-specific antigens."

The diversity of tumors and the fact that each person's immune system is unique complicates tumor immunotherapy. Scientists need to match specific protein fragments derived from a person's tumor to his or her MHC molecule.

"The discovery of this new pathway allows the dendritic cell's natural machinery to decide which pieces of the protein are useful to an individual's immune system," says Albert. "We hope that immunotherapy will be available for people with immune systems that don't match common MHC types."

On a historical note, the dendritic cell was discovered at Rockefeller in 1973 by Henry G. Kunkel Professor Ralph M. Steinman, M.D., and the late Zanvil A. Cohn, M.D.

Funding for this work was provided in part by the National Institute of Allergy and Infectious Diseases, part of the federal government's National Institutes of Health (NIH), and by the NIH Medical Scientist Training Program.

Rockefeller began in 1901 as The Rockefeller Institute for Medical Research, the first U.S. biomedical research center. Rockefeller faculty members have made significant achievements, including the discovery that DNA is the carrier of genetic information and the launching of the scientific field of modern cell biology. The university has ties to 19 Nobel laureates, including the president, Torsten N. Wiesel, M.D., who received the prize in 1981. The university recently created six centers to foster collaborations among scientists to pursue investigations of Alzheimer's disease, of biochemistry and structural biology, of human genetics, of immunology and immune diseases, of sensory neurosciences and of the links between physics and biology.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Researchers From Rockefeller University Develop Novel Method To Fight Cancer." ScienceDaily. ScienceDaily, 12 March 1998. <www.sciencedaily.com/releases/1998/03/980312080219.htm>.
Rockefeller University. (1998, March 12). Researchers From Rockefeller University Develop Novel Method To Fight Cancer. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/1998/03/980312080219.htm
Rockefeller University. "Researchers From Rockefeller University Develop Novel Method To Fight Cancer." ScienceDaily. www.sciencedaily.com/releases/1998/03/980312080219.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins