Featured Research

from universities, journals, and other organizations

Oil Exploration: Researchers Invent New Way To See Underground

Date:
March 17, 1998
Source:
Lawrence Berkeley National Laboratory
Summary:
It's one thing to strike oil, another to get it all out of the ground. Reservoirs are often prematurely abandoned because of "oil behind the hole" -- pockets of hydrocarbons that wells completely miss. Better ways of seeing what's down there are crucial to efficient use of the nation's energy reserves.

BERKELEY, CA. -- It's one thing to strike oil, another to get it all out of the ground. Reservoirs are often prematurely abandoned because of "oil behind the hole" -- pockets of hydrocarbons that wells completely miss. Better ways of seeing what's down there are crucial to efficient use of the nation's energy reserves.

A new method for making images of the subsurface has been devised by Ki Ha Lee of the Department of Energy's Lawrence Berkeley National Laboratory. Lee and his colleagues in the Earth Sciences Division use data generated with electromagnetic energy (EM) in a novel way that can visualize the subsurface at depths ranging from gas and oil reservoirs thousands of meters deep to plumes of pollutants in shallow soil.

"Electromagnetic energy tends to propagate without loss in free space, but in the ground the story is very different," Lee says. "The ground attenuates the signal severely, especially at the higher frequencies. Instead of propagating like a wave in space, an EM field diffuses into the ground almost like heat does through a solid medium."

Traditional EM imaging techniques involve transmitting signals, then acquiring and processing the data to map the distribution of subsurface electrical resistivity. Signals can be sent between boreholes, between the surface and the borehole, or from surface to surface. Signals vary in strength according to the electrical resistivity of the material through which they travel; oil-bearing sand, for example, can be ten times as resistive as surrounding clay or carbonates.

Unfortunately, differences in resistivity can be detected confidently only at close range. Lee compares the process of detecting diffuse EM signals to "measuring the temperature" at various points underground. Away from the measurement points the spatial resolution of resistivity is usually limited, but drilling boreholes close together for better resolution is prohibitively expensive.

While Lee uses low-frequency, diffusive, electromagnetic data sent between boreholes, his method allows better images to be constructed at greater range, significantly reducing drilling costs. He employs a clever mathematical transformation to convert diffusive EM signals into "wavefields;" the resistivity image is constructed using the transformed wavefield's travel times.

Examples of wavefields include familiar seismograms, which make use of earthquakes or other earth-shaking events, and sonar, which is based on underwater sound waves. Radar works in a similar way, using electromagnetic waves which travel well in air or vacuum but can penetrate only a little way into the ground. All depend on signal travel time to construct images.

In converting low-frequency EM data to wavefield form, Lee transforms the real-time electromagnetic fields to mathematical equivalents which are easier to manipulate. Thus he can apply familiar methods for using time-dependent data to generate tomograms -- maps of two dimensional slices -- of the geological structures between the receivers and transmitters.

In a typical use of the technique, a receiver is held steady in one borehole and a transmitter is moved down a different borehole to different locations, at each of which it sends out a signal. Next the receiver is moved to a new fixed position; the transmitter again transmits from different locations.

The result is a series of signals emitted at various depths, each of which is also detected at various depths. Rays can be drawn connecting each transmitter point with each receiver point, representing discrete paths of the signals; from the travel times along these raypaths the image is constructed.

In a heterogeneous medium the raypaths are usually curved, because the travel time between a given transmitter-receiver pair depends on the distribution of differences in resistivity along the path -- the more the electrical resistance, the faster the travel time. To construct an image, all the raypaths are combined as if generated at the same time. Thus the distribution of resistivity between the boreholes is constructed as a tomogram representing local geological conditions.

Lee and his colleagues first tested the new method in a homogeneous medium, a block of graphite in the laboratory. The success of these tests led to construction of a full-scale transmitter, which has been field-tested at the University of California's Richmond Field Station. A combined transmitter-receiver field test is planned this year with the help of Western Atlas Logging Services in Houston. A final data-processing phase will follow.

Only about a fourth of the oil and gas in known reservoirs is recovered, and some 40 percent of the nation's reserves reside in already-discovered reservoirs. The new imaging technique developed by Lee and his colleagues will make it easier to find what's been bypassed. The same methods can be used to characterize environmental problems and monitor their remediation.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "Oil Exploration: Researchers Invent New Way To See Underground." ScienceDaily. ScienceDaily, 17 March 1998. <www.sciencedaily.com/releases/1998/03/980317070030.htm>.
Lawrence Berkeley National Laboratory. (1998, March 17). Oil Exploration: Researchers Invent New Way To See Underground. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/1998/03/980317070030.htm
Lawrence Berkeley National Laboratory. "Oil Exploration: Researchers Invent New Way To See Underground." ScienceDaily. www.sciencedaily.com/releases/1998/03/980317070030.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins