Featured Research

from universities, journals, and other organizations

Do Giant Planets Form Quickly Or Slowly?

Date:
May 18, 1998
Source:
Carnegie Institution
Summary:
In a paper published in the May 14 issue of Nature, Alan Boss of the Carnegie Institution of Washington explains that by looking for wobbles in young stars, a clear-cut test can be applied that will determine the mechanism through which giant planets form out of the disks of gas and dust that swirl around the youngest stars.

After decades of intensive searching, astronomers have found the first giant planets orbiting around other stars like the Sun. We now know that giant planets similar to Jupiter are not rare in the universe, and exist around a number of stars in the Sun's neighborhood of the galaxy. However, all of these planets are thought to be about as old as the stars around which they orbit, typically billions of years old, like the Sun. These planets are middle-aged, then, as planets go. In order to find out what these planets were like when they were infants, and in particular to learn what processes led to their formation, astronomers need to search for them around much younger stars.

Related Articles


In a paper published in the May 14 issue of Nature, Alan Boss of the Carnegie Institution of Washington explains that by looking for wobbles in young stars, a clear-cut test can be applied that will determine the mechanism through which giant planets form out of the disks of gas and dust that swirl around the youngest stars. Once a giant planet is formed in orbit around a young star, the star will wobble back and forth as the star and planet orbit around their common center. A wobbling star, therefore, implies the presence of an otherwise unseen planetary companion.

There are two ways in which giant planets are thought to have formed. One mechanism is very slow, and requires about a million years for a massive solid core to form from collisions between smaller ice and rock bodies, followed by about 10 million years during which the solid core gains a gaseous atmosphere from the disk and grows to its final, Jovian size. Boss has found that the second mechanism is much faster, and requires only about a thousand years for the disk itself to clump up directly into a large ball of gas and dust that will form the giant planet.

If giant planets form by the solid-core mechanism, then young stars will not begin to wobble until they are no longer adolescents, i.e., until after they are 10 million years old or older. However, if giant planets form by the disk-clumping mechanism, then even the very youngest stars will wobble. In fact, Boss shows, the youngest stars will begin to wobble appreciably even during the process where the disk begins to form clumps. NASA's planned Space Interferometry Mission (for launch in around 2005) will have the power to detect easily these tiny, infantile motions. By looking closely at a large sample of young stars in nearby star-forming regions (e.g., in the Taurus constellation), astronomers will soon be able to find the clues that will solve the puzzle of how giant planets form.

Alan Boss is a staff member at the Carnegie Institution of Washington's Department of Terrestrial Magnetism (DTM) in northwest Washington, D.C. DTM, led by Sean C. Solomon, is one of the institution's five research centers. In addition to astronomy, Carnegie conducts research in the earth sciences, plant biology, and developmental biology. The institution's administration building, housing the office of president Maxine F. Singer, is in Washington, D.C..


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Do Giant Planets Form Quickly Or Slowly?." ScienceDaily. ScienceDaily, 18 May 1998. <www.sciencedaily.com/releases/1998/05/980518061620.htm>.
Carnegie Institution. (1998, May 18). Do Giant Planets Form Quickly Or Slowly?. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/1998/05/980518061620.htm
Carnegie Institution. "Do Giant Planets Form Quickly Or Slowly?." ScienceDaily. www.sciencedaily.com/releases/1998/05/980518061620.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins