Featured Research

from universities, journals, and other organizations

Researchers Discover Way To Grow New Kidneys In Rats

Date:
June 29, 1998
Source:
Washington University School Of Medicine
Summary:
Researchers at Washington University School of Medicine in St. Louis have found a novel way to grow new kidneys that may one day lessen the need for human donor organs. When they placed a developing rat kidney inside the abdominal cavity of an adult rat, it became a smaller version of an adult kidney.

St. Louis, June 24, 1998 -- Researchers at Washington University School of Medicine in St. Louis have found a novel way to grow new kidneys that may one day lessen the need for human donor organs. When they placed a developing rat kidney inside the abdominal cavity of an adult rat, it became a smaller version of an adult kidney.

"The organs look just like normal rat kidneys," says lead scientist Marc R. Hammerman, M.D., the Chromalloy Professor of Renal Diseases in Medicine and director of the Renal Division. Hammerman notes that their function needs to be improved before they can be of use, but he hopes the work could be used to develop transplantable kidneys that would be less likely to be rejected." More than 39,000 kidney patients currently are on the national waiting list of the United Network for Organ Sharing. In 1997, 2,000 people died waiting for a kidney.

Hammerman's results are published in the July issue of Kidney International. His wife, Nancy Hammerman, is a co-author. An art teacher in the Pattonville School District, Nancy Hammerman suggested that developing kidneys might be a source of transplants after hearing her husband give a transplant lecture in March 1996 in London, England.

Soon after, Hammerman and research instructor Sharon Rogers tried placing single developing kidneys under the capsule that covers the kidney of adult rats. The juvenile kidneys, as small as a pencil tip, are called metanephroi. They survived and grew "despite concern that the rats' immune defenses would attack the foreign organs." "They actually grew and developed into kidneys that you don't need to immunosuppress," Hammerman says.

The kidneys did not grow well, possibly due to tight quarters inside the kidney capsule. But when the researchers placed the dots of kidney tissue inside a sac-like membrane that surrounds and supports abdominal organs, they reached a third of the size of an adult kidney within 6 weeks. The membrane releases growth promoting factors and ones that stimulate blood vessel formation.

Within four weeks, the rats had produced new blood vessels that connected the kidneys to their own blood supply, creating chimeric kidneys containing parts from two different animals. To test whether the organs function, Hammerman and Rogers removed a kidney from several animals and attached each foreign kidney to the ureter left behind. The ureter is a tube at the base of a kidney that carries urine to the bladder.

The researchers removed the rats' other kidneys at this point and tested the chimeras' ability to single-handedly carry out kidney function. A small amount of a sugar called inulin was injected into the rats' bloodstream. It was cleared by the chimeric kidneys and dumped into the rat's urine.

The chimeric kidneys had less than 1 percent of a normal kidney's function. In comparison, a dialysis machine augments a person's kidney function by roughly 10 percent. The researchers are testing a cocktail of growth factors to try to increase chimera function to 20 percent of normal. "We're not at the point where these kidneys can sustain life, but we're working on it," Hammerman says.

They also have shown that chimeric kidneys thrive and are not rejected by rats' immune systems within 6 months of attachment to ureters. Hammerman suspects this partly reflects the host origin of the kidney's blood vessels because foreign blood vessels are a major stimulator of rejection. The use of a developing kidney also was key to reducing the immune response. A rat rejects an adult kidney from another rat within a week. "A rat kidney is sufficiently different from a human kidney to be a poor transplant choice, but pig kidneys are similar in size and function to those of humans. Hammerman suggests that developing pig kidneys might be more suitable for transplantation. Once a kidney was transplanted, it would be fed by blood vessels from the human host. " He notes, however, that the risk of transmitting viruses from pigs to humans needs to be adequately addressed before considering such transplants. "This work is only a first step," he emphasizes. "We're a long way from be ing able to use this technology in humans."


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Researchers Discover Way To Grow New Kidneys In Rats." ScienceDaily. ScienceDaily, 29 June 1998. <www.sciencedaily.com/releases/1998/06/980629073605.htm>.
Washington University School Of Medicine. (1998, June 29). Researchers Discover Way To Grow New Kidneys In Rats. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/1998/06/980629073605.htm
Washington University School Of Medicine. "Researchers Discover Way To Grow New Kidneys In Rats." ScienceDaily. www.sciencedaily.com/releases/1998/06/980629073605.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins