Featured Research

from universities, journals, and other organizations

Penn State-Led Team Develops New, Improved Land Mine Detector

Date:
July 7, 1998
Source:
Penn State
Summary:
By adding state-of-the-art computer-based feedback control concepts to a decades-old analytical laboratory technology, a Penn State-led team has developed a prototype land mine detector that promises to be safer, more accurate and easier to operate than existing models.

University Park, Pa -- By adding state-of-the-art computer-based feedback control concepts to a decades-old analytical laboratory technology, a Penn State-led team has developed a prototype land mine detector that promises to be safer, more accurate and easier to operate than existing models.

Dr. Jeffrey L. Schiano, Penn State assistant professor of electrical engineering, and Dr. Mark D. Ginsberg, principal investigator, at the U.S. Army's Construction Engineering Research Laboratory, developed the detector which is the first to apply feedback technology along with nuclear quadrupole resonance (NQR) spectroscopy, an analytical tool developed in the late 1940s and early 1950s for crystal structure studies. They recently filed a patent disclosure for their concept and have also presented their findings at scientific meetings, most recently at the 39th Experimental Nuclear Magnetic Resonance Conference in California.

Schiano says that in the 1960s and 1970s, researchers in the U.S. and Russia each independently developed experimental NQR-based detectors for use in mine fields. More recently, commercial NQR-based systems have been developed in the U.S. and in Britain for narcotics and explosive detection in airline baggage. However, all of these instruments are hampered by the fact that the NQR signal generated by explosives is small, easily drowned out by background noise and has a short duration.

Schiano and Ginsberg have shown that they can overcome these problems by applying feedback control concepts to enhance the signal and separate it from background noise. For example, in operation, their detector, like the other NQR devices available, sends out a radio frequency (RF) pulse which can disturb the nuclear magnetization of nitrogen-based explosives, such as TNT. The disturbance in the nitrogen nuclei, in turn, produces a characteristic NQR signal, which is recorded on a graph.

However, unlike the other available NQR-based detectors, Schiano and Ginsberg's new device is equipped with feedback control algorithms that automatically increase or decrease the repetition rate of the RF pulse and quicken or slow the time that elapses between the creation and collapse of the disturbance in the nuclear magnetization. In this way, their detector can compensate for weak NQR signals or excessive background noise. In addition, the feedback algorithms enable the new detector to automatically calibrate itself, making it easy to operate even for unskilled personnel.

Since the new device detects explosives based on their unique NQR response, there are fewer false alarms than with older devices. The new NQR device reacts to the explosive not the metal case, shrapnel or other clutter as metal detectors used for de-mining do.

Ground penetrating radar, another de-mining technique, does not perform well in dry soil and produces false positives from rocks and tree roots. Chemical sniffers, which can detect the presence of mines in a general area, can't pinpoint their location as NQR can.

Prodding or poking a rod into the ground by hand is currently the technique that is most often employed to locate land mines. Feedback NQR promises to be safer and more accurate.

Currently, the device has been tested only with the nitrogen- bearing compound, sodium nitrite, rather than TNT or other explosives. However the results have been so positive that Schiano says, "It is the further application of feedback concepts that will improve, if not enable, the use of NQR in land mine detection."


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Penn State-Led Team Develops New, Improved Land Mine Detector." ScienceDaily. ScienceDaily, 7 July 1998. <www.sciencedaily.com/releases/1998/07/980707072804.htm>.
Penn State. (1998, July 7). Penn State-Led Team Develops New, Improved Land Mine Detector. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1998/07/980707072804.htm
Penn State. "Penn State-Led Team Develops New, Improved Land Mine Detector." ScienceDaily. www.sciencedaily.com/releases/1998/07/980707072804.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins