Featured Research

from universities, journals, and other organizations

NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals

Date:
August 14, 1998
Source:
New York University
Summary:
A team of researchers led by New York University chemist Nadrian C. Seeman, in collaboration with California Institute of Technology computer scientist Erik Winfree, has developed a simple, predictable and highly precise process for causing molecules in solution to assemble themselves into two-dimensional crystals with pre-programmed topographic features. Such molecular self-assembly presents a 'bottom-up' approach to the fabrication of objects specified with nanometer precision.

Technique Could Be Used Some Day For Inexpensive, Rapid Manufacture Of Molecule-Sized Computer Technology -- NYU Chemist Nadrian C. Seeman and Colleagues Report Findings In August 6th Issue Of Nature

Related Articles


A team of researchers led by New York University chemist Nadrian C. Seeman, in collaboration with California Institute of Technology computer scientist Erik Winfree, has developed a simple, predictable and highly precise process for causing molecules in solution to assemble themselves into two-dimensional crystals with pre-programmed topographic features. Such molecular self-assembly presents a 'bottom-up' approach to the fabrication of objects specified with nanometer precision.

The work of Seeman's team, which is reported in the August 6th issue of Nature, is regarded as a significant advance in nanotechnology -- scientists' efforts to control the detailed structure of matter on the finest possible scale. For decades, scientists have struggled to develop reliable techniques for arranging groups of molecules into orderly structures.

The research of Seeman's team may have practical implications for engineers attempting to develop molecule-sized computer technology. The work may also lead to advances in the determination of the structures of biological molecules.

Seeman's team worked with synthetic DNA double-crossover (DX) molecules. The researchers exploited the key chemical feature of DNA -- its ability to associate with and recognize other DNA molecules by sequence-specific base-pairing. Genetic engineers make use of this feature by constructing DNA with single-strand overhangs or "sticky ends" able to bond to complementary base sequences and bring two DNA molecules into proximity.

Visualized with atomic force microscopy, the crystals fabricated by Seeman's team were found to conform with their intended design. One set of crystals had an A-B repeating structure of DX molecular units, where the B units possessed modifications visible as stripes. The other set had an A-B-C-D structure, where only the D units possessed the modifications. Both sets had evenly-spaced stripes at predicted separations; the stripes in the A-B-C-D structure were twice as far apart as in the A-B structure, demonstrating the accuracy of the molecular recognition.

The authors of the Nature article, entitled "Design and self-assembly of two-dimensional DNA crystals" are as follows: Erik Winfree, Computation and Neural Systems, California Institute of Technology; Furong Liu, NYU Department of Chemistry; Lisa A. Wenzler, NYU Department of Chemistry; and Nadrian C. Seeman, NYU Department of Chemistry.

Nadrian C. Seeman was born in Chicago in 1945. Following a BS in biochemistry from the University of Chicago, he received his Ph.D. in biological crystallography from the University of Pittsburgh in 1970. His postdoctoral training, at Columbia and MIT, emphasized nucleic acid crystallography. He obtained his first independent position at SUNY/Albany, where his frustrations with the macromolecular crystallization experiment led him one day to the campus pub. There, he realized that the similarity between 6-arm DNA branched junctions and the periodic array of flying fish in Escher's 'Depth' might lead to the rational approach to crystallization described here. He has been trying to implement it ever since, for the last ten years at NYU. Further information is available at http://seemanlab4.chem.nyu.edu.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals." ScienceDaily. ScienceDaily, 14 August 1998. <www.sciencedaily.com/releases/1998/08/980814070053.htm>.
New York University. (1998, August 14). NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/1998/08/980814070053.htm
New York University. "NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals." ScienceDaily. www.sciencedaily.com/releases/1998/08/980814070053.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins