Featured Research

from universities, journals, and other organizations

NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals

Date:
August 14, 1998
Source:
New York University
Summary:
A team of researchers led by New York University chemist Nadrian C. Seeman, in collaboration with California Institute of Technology computer scientist Erik Winfree, has developed a simple, predictable and highly precise process for causing molecules in solution to assemble themselves into two-dimensional crystals with pre-programmed topographic features. Such molecular self-assembly presents a 'bottom-up' approach to the fabrication of objects specified with nanometer precision.

Technique Could Be Used Some Day For Inexpensive, Rapid Manufacture Of Molecule-Sized Computer Technology -- NYU Chemist Nadrian C. Seeman and Colleagues Report Findings In August 6th Issue Of Nature

A team of researchers led by New York University chemist Nadrian C. Seeman, in collaboration with California Institute of Technology computer scientist Erik Winfree, has developed a simple, predictable and highly precise process for causing molecules in solution to assemble themselves into two-dimensional crystals with pre-programmed topographic features. Such molecular self-assembly presents a 'bottom-up' approach to the fabrication of objects specified with nanometer precision.

The work of Seeman's team, which is reported in the August 6th issue of Nature, is regarded as a significant advance in nanotechnology -- scientists' efforts to control the detailed structure of matter on the finest possible scale. For decades, scientists have struggled to develop reliable techniques for arranging groups of molecules into orderly structures.

The research of Seeman's team may have practical implications for engineers attempting to develop molecule-sized computer technology. The work may also lead to advances in the determination of the structures of biological molecules.

Seeman's team worked with synthetic DNA double-crossover (DX) molecules. The researchers exploited the key chemical feature of DNA -- its ability to associate with and recognize other DNA molecules by sequence-specific base-pairing. Genetic engineers make use of this feature by constructing DNA with single-strand overhangs or "sticky ends" able to bond to complementary base sequences and bring two DNA molecules into proximity.

Visualized with atomic force microscopy, the crystals fabricated by Seeman's team were found to conform with their intended design. One set of crystals had an A-B repeating structure of DX molecular units, where the B units possessed modifications visible as stripes. The other set had an A-B-C-D structure, where only the D units possessed the modifications. Both sets had evenly-spaced stripes at predicted separations; the stripes in the A-B-C-D structure were twice as far apart as in the A-B structure, demonstrating the accuracy of the molecular recognition.

The authors of the Nature article, entitled "Design and self-assembly of two-dimensional DNA crystals" are as follows: Erik Winfree, Computation and Neural Systems, California Institute of Technology; Furong Liu, NYU Department of Chemistry; Lisa A. Wenzler, NYU Department of Chemistry; and Nadrian C. Seeman, NYU Department of Chemistry.

Nadrian C. Seeman was born in Chicago in 1945. Following a BS in biochemistry from the University of Chicago, he received his Ph.D. in biological crystallography from the University of Pittsburgh in 1970. His postdoctoral training, at Columbia and MIT, emphasized nucleic acid crystallography. He obtained his first independent position at SUNY/Albany, where his frustrations with the macromolecular crystallization experiment led him one day to the campus pub. There, he realized that the similarity between 6-arm DNA branched junctions and the periodic array of flying fish in Escher's 'Depth' might lead to the rational approach to crystallization described here. He has been trying to implement it ever since, for the last ten years at NYU. Further information is available at http://seemanlab4.chem.nyu.edu.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals." ScienceDaily. ScienceDaily, 14 August 1998. <www.sciencedaily.com/releases/1998/08/980814070053.htm>.
New York University. (1998, August 14). NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1998/08/980814070053.htm
New York University. "NYU Researchers Develop Simple, Predictable And Precise Technique For Arranging DNA Molecules Into Two-Dimensional Crystals." ScienceDaily. www.sciencedaily.com/releases/1998/08/980814070053.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins