Featured Research

from universities, journals, and other organizations

Tiny Bubbles Help Researchers See Inside Blood Vessels

Date:
September 1, 1998
Source:
Duke University Medical Center
Summary:
Hawaiian crooner Don Ho's "tiny bubbles" is meant to tug at the heart strings. Now, researchers at Duke University Medical Center have created tiny bubbles of their own to help them understand how the heart is hurting.

DURHAM, N.C.--Hawaiian crooner Don Ho's "tiny bubbles" is meant to tug at the heart strings. Now, researchers at Duke University Medical Center have created tiny bubbles of their own to help them understand how the heart is hurting. They hope the red-blood-cell-sized microbubbles filled with a special type of helium gas will eventually allow doctors to make more detailed measurements of blood flow in human organs, such as the heart.

The study, published in the Sept. 1 issue of the Proceedings of the National Academy of Sciences, shows it is feasible to suspend helium gas in the microbubbles, inject it into the blood vessels of a mouse, and take detailed magnetic resonance images (MRI) of the vessels. The research was supported by the National Institutes of Health, the National Center for Research Resources, the National Science Foundation, and the Whitaker Foundation.

The researchers are using "hyperpolarized" helium gas as a contrast agent to create high-resolution MRI images. They use lasers to "excite" or hyperpolarize the helium's nucleus. The hyperpolarized gas is inert to humans and animals, yet it yields a strong MRI signal.

"We see this as an opportunity to get structure and function information about blood flow and vessel health in a single MRI scan," said G. Allan Johnson, director of Duke's Center for In Vivo Microscopy and principal investigator of the study. "The microbubbles provide a unique sensitive signal source, with no background signal, which allows us to see blood vessels in great detail."

Johnson said the technique combines the strengths of several imaging technologies in one method. Like angiography or conventional MRI, it could be valuable in vascular imaging, and like positron emission tomography (PET) imaging, it could be used in perfusion studies, which measure how much blood is reaching tissue within an organ. Such studies are important in assessing, for example, whether arteries partially blocked by cholesterol plaques are dangerously reducing blood flow to the heart or other organs.

Right now, doctors measure blood flow to the heart, brain or other organs using PET, which uses radioactive tracers to measure flow. Such studies are useful, but offer fairly low resolution, as well as some exposure to radioactivity. In addition, the tracer stays in the bloodstream for minutes to hours and recirculates throughout the body every minute, reducing the accuracy of measurements. By contrast, the microbubble signal is "tapped" when the MRI magnet measures it, and is destroyed. It does not recirculate, Johnson said.

Also, typical MRI scanners measure protons in water, which is found almost everywhere in the body, meaning measurements have significant background signals. Helium is not normally found in the body, so the MRI picks up only signal, with no background.

"This research could open up a new clinical resource -- one in which vascular, perfusion and anatomical imaging can be done all in one place, in a single non-invasive study," Johnson said

In 1995, a group of researchers in Duke's Center for In Vivo Microscopy generated the first clear image of a human lung using inhaled hyperpolarized helium gas. That technique is now being tested in human clinical trials.

To extend that work, biomedical engineering graduate student Mark Chawla, Johnson, and a team of physicists and physiologists wanted to explore the use of hyperpolarized helium gas imaging in other areas of the body. Unfortunately, the gas doesn't dissolve well in blood, making it difficult to introduce into the blood stream.

To solve the problem, Chawla adapted a technique sometimes used by ultrasound radiologists. He created tiny microbubbles of helium in a solution of commercially available ultrasound contrast fluid. When he injected these microbubbles into anesthetized mice and took MRI images of the animals, he was able to create detailed images of the animals' arteries and veins.

"We believe these microbubbles, since they are about the size of a red blood cell, will be an accurate indicator of actual blood flow, whereas current liquid contrast agents can leak out of tiny blood vessels," Chawla said.

The microbubbles are different from larger air bubbles, which can cause embolisms, or blockages, of arteries. The microbubbles are very small -- from 2 to 30 microns. The red blood cell is about 5 to 8 microns. The microbubbles circulate along with blood cells throughout the bloodstream, ending up in the lung, where the helium is exhaled and the microbubbles dissipate.

While the scientists say their research is promising, they caution that more research is needed to make the technique applicable to human studies. They must show, for example, that the microbubbles won't coalesce into larger bubbles that could cause embolisms. This is unlikely, said Chawla, because ultrasound microbubbles have not done so, but safety studies will be done to rule out that possibility.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Tiny Bubbles Help Researchers See Inside Blood Vessels." ScienceDaily. ScienceDaily, 1 September 1998. <www.sciencedaily.com/releases/1998/09/980901024616.htm>.
Duke University Medical Center. (1998, September 1). Tiny Bubbles Help Researchers See Inside Blood Vessels. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/1998/09/980901024616.htm
Duke University Medical Center. "Tiny Bubbles Help Researchers See Inside Blood Vessels." ScienceDaily. www.sciencedaily.com/releases/1998/09/980901024616.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins