Featured Research

from universities, journals, and other organizations

UF Biotech Breakthrough Drives World's First Biomass-To-Ethanol Plant

Date:
October 20, 1998
Source:
Institute Of Food And Agricultural Sciences, University Of Florida
Summary:
A breakthrough biotech "bug" developed by a University of Florida scientist will help produce 20 million gallons of ethanol fuel annually at the world's first commercial biomass-to-ethanol plant.

GAINESVILLE---A breakthrough biotech "bug" developed by a University ofFlorida scientist will help produce 20 million gallons of ethanol fuelannually at the world's first commercial biomass-to-ethanol plant.

Related Articles


Ground breaking for the $90-million facility being built by BC InternationalCorp. in Jennings, La., is set for Tuesday (10-20). The plant, expected tobe operational in 18 months, will be the first to convert organic wastebiomass into ethanol, a form of alcohol used as an industrial chemical andas a clean-burning fuel.

The plant's technology and operating system is based upongenetically-engineered bacteria developed by Lonnie Ingram, microbiologistwith the UF's Institute of Food and Agricultural Sciences.

Ingram's microorganism produces a high yield of ethanol from biomass such assugar cane residues, rice hulls, forestry and wood wastes and other organicmaterials.

"Until we developed this new technology, the chemical makeup of biomassprevented it from being used to make ethanol economically," Ingram said."Biomass is a much cheaper source of ethanol than traditional feedstockssuch as corn and cane syrup.

"The new technology will allow ethanol to become economically competitivewith fossil fuels for the first time," he said. "Until now, all the world'sethanol has been produced by yeast fermentation, which converts sugars intoethanol, carbon dioxide and other by-products."

The UF bioconversion technology, which became landmark patent No. 5,000,000by the U.S. Department of Commerce in 1991, was the world's firstgenetically engineered E. coli bacteria capable of converting all sugartypes found in plant cell walls into fuel ethanol for automobiles.

Ingram's research is supported by the U.S. Department of Agriculture andDepartment of Energy. BC International Corp., based in Dedham, Mass., holdsexclusive rights to use and license the UF-engineered bacteria, dubbed"KO11" by the firm.

"Instead of using corn or grain to make ethanol fuel, they'll be used tofeed people," said BCI Executive Vice President Clinton Norris. "With thisnew technology, we can provide a source of energy by utilizing waste fromfarm crops -- not the crops themselves. In this way, we're helping solve theproblems of hunger and our endangered environmental resources."

The energy department, which is providing cost-sharing support for the newBCI facility in Louisiana, is promoting the new technology to increase thenation's energy independence and protect the environment.

"This is an important step in the development of sustainable technologiesfor an integrated bioenergy industry -- using biomass for the production ofelectricity, fuels and chemicals. It demonstrates the exciting results thatcan occur when government and industry work together to develop and deploynew technologies," said Bill Richardson, secretary of the energy department."It is fitting that BC International Corp.'s path-breaking ethanol facilitywill be launched on the 25th anniversary of the oil embargo, which was themajor impetus in the search for alternative sources of energy."

Currently, the United States consumes about 120 billion gallons ofautomotive fuel each year. Fuel ethanol from corn is blended with 10 percentof this gasoline to improve octane ratings and burn cleaner.

"There are enough agricultural and timber residues to completely replacegasoline in the U.S. and in many other countries," Ingram said. "Brazil hasused pure ethanol as a primary fuel for more than 20 years."

Ingram genetically engineered the organisms by cloning the unique genesneeded to direct the digestion of sugars into ethanol, the same pathwayfound in yeast and higher plants. These genes were inserted into a varietyof bacteria that has the ability to use all sugars found in plant materialbut normally produces acetic and lactic acids as fermentation products.

His ethanol genes served to redirect the digestive processes in thesebacteria to produce ethanol at 90 to 95 percent efficiency.


Story Source:

The above story is based on materials provided by Institute Of Food And Agricultural Sciences, University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

Institute Of Food And Agricultural Sciences, University Of Florida. "UF Biotech Breakthrough Drives World's First Biomass-To-Ethanol Plant." ScienceDaily. ScienceDaily, 20 October 1998. <www.sciencedaily.com/releases/1998/10/981020074004.htm>.
Institute Of Food And Agricultural Sciences, University Of Florida. (1998, October 20). UF Biotech Breakthrough Drives World's First Biomass-To-Ethanol Plant. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/1998/10/981020074004.htm
Institute Of Food And Agricultural Sciences, University Of Florida. "UF Biotech Breakthrough Drives World's First Biomass-To-Ethanol Plant." ScienceDaily. www.sciencedaily.com/releases/1998/10/981020074004.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins