Featured Research

from universities, journals, and other organizations

New Radio Antennas May Cool Car Interiors, Defrost Car Windows

Date:
November 3, 1998
Source:
Ohio State University
Summary:
Engineers at Ohio State University have found a way to convert two common car window components into AM/FM radio antennas.

COLUMBUS, Ohio -- Engineers at Ohio State University have found a way to convert two common car window components into AM/FM radio antennas.

Related Articles


The marriage of these two technologies may lead to invisible radio antennas that not only receive AM and FM signals, but also defrost windshields and help keep car interiors cooler.

Eric K. Walton, senior research scientist and adjunct professor of electrical engineering, said that this work is a response to the auto industry’s desire to build more antennas into new cars.

“We’ll soon see car antennas not just for radios, but for radar, cellular phones, and global positioning systems,” said Walton. “That’s why we’re developing multi-purpose antennas that fit unobtrusively into the windshields of cars.”

Walton explained that traditional antennas aren’t very aerodynamic and break easily, while visible wire antennas embedded within windows often have to be hidden behind a strip of black paint around the periphery of the glass.

The two new designs take advantage of materials already present in car windows so the antennas don’t protrude from the body of the car or need to be hidden behind paint. The researchers have received patents on the two antennas, and work relating to the first design appeared in a recent issue of the journal IEEE Transactions on Vehicular Technology.

The first antenna relies on a transparent metal film imbedded between the layers of window glass. Some new car windows already contain this film, which deflects the heat from sunlight and keeps a car’s interior cooler.

The drivers of these new cars use their air conditioners less, and save energy. Moreover, automakers can install air conditioners in these cars that are more environmentally-friendly.

Walton and his students designed coupling techniques that allow this film to receive AM/FM radio signals.

To test the design, the researchers installed a film antenna in the windshield of a late model Cadillac, connected it to a computer-interfaced, digitally-tuned radio, and took the car for test drives around Columbus. They drove within the city, on the freeway, and through suburban areas.

For AM radio stations, the early design of the film antenna performed 5 decibels better than a traditional antenna. For FM radio stations, the received signal was 5 decibels weaker in the early design.

Walton stressed that, although neither difference changes the overall quality of the sound to the human ear, since running those initial tests he and his students have improved the film antenna’s FM reception considerably.

“Of course, as researchers we’re interested in the details,” said Walton. “But the person who buys a car with this kind of antenna and listens to the radio isn’t going to notice the small differences that we’re measuring here.”

The second design makes a radio antenna out of the wire heating elements already embedded in many rear windows.

Normally, the wires that power these heating elements would short a radio antenna. Walton and his students built an isolation transformer system that allows AM/FM reception while permitting heating power to pass through. The device is inside the body of the car beneath the rear window.

“The heating elements are already there, and they are insulated from the body of the car, so they already have many of the characteristics of an antenna,” said Walton. “The equipment to manufacture them already exists, so we knew this would be a very inexpensive way to add an antenna to an automobile.”

Walton said that the reception of the heating elements is comparable to a standard antenna. Those results have yet to be published, but Ohio State received a patent on the technology in July 1998.

In 1999, the researchers will work to combine the two technologies into a heated metal film antenna. Sponsor PPG Industries of Pittsburgh, PA, will continue to provide funding and prototype windshields.

“If we put both these patents together, we could produce a front windshield that can help cool a car in summer, defrost itself in winter, and receive AM/FM signals -- but still remain completely transparent,” said Walton.

He added that the same technology could be used in windows for ships and aircraft, and he’s hoping to pursue those avenues in the future.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "New Radio Antennas May Cool Car Interiors, Defrost Car Windows." ScienceDaily. ScienceDaily, 3 November 1998. <www.sciencedaily.com/releases/1998/10/981031180547.htm>.
Ohio State University. (1998, November 3). New Radio Antennas May Cool Car Interiors, Defrost Car Windows. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/1998/10/981031180547.htm
Ohio State University. "New Radio Antennas May Cool Car Interiors, Defrost Car Windows." ScienceDaily. www.sciencedaily.com/releases/1998/10/981031180547.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins