Featured Research

from universities, journals, and other organizations

New Evidence Points To Role For Free Radicals In Alzheimer's Disease

Date:
December 9, 1998
Source:
University Of Pennsylvania Medical Center
Summary:
In a new study by University of Pennsylvania Medical Center researchers, free-radical activity was found to be roughly doubled in the frontal and temporal lobes of the brains of people who had died of Alzheimer's disease when compared to the same regions of normal brains.

In a new study by University of Pennsylvania Medical Center researchers, free-radical activity was found to be roughly doubled in the frontal and temporal lobes of the brains of people who had died of Alzheimer's disease when compared to the same regions of normal brains.

Related Articles


Additionally, the frontal and temporal lobes were the only parts of the brains where the levels of two recently identified biochemical markers of free-radical tissue damage were seen to be elevated. This is an important observation because these two areas of the brain, critical for memory and intellectual function, are the ones most affected by the disease. A report on the new findings appears in the December issue of the FASEB Journal.

"The strength of what we found was that, firstly, these markers were elevated only in the affected parts of the brains of people who died of Alzheimer's disease," says Garret A. FitzGerald, MD, chairman of the department pharmacology and senior author on the report. "And, secondly, the markers were not elevated in the same parts of the brains of people who died of other causes. This suggests that what we're looking at are sensitive, quantitative indicators of disease activity."

The most abundant of the two markers was also found to be significantly elevated in the cerebrospinal fluid, or CSF. The importance of this finding is that the CSF is a relatively accessible body fluid, so that extensions of the current work into living patients presumed to have Alzheimer's disease will be possible. Indeed, such studies have already begun at Penn. Likely to emerge from these investigations will be more accurate methods for disease diagnosis, improved assessments of drugs against the disease, and a clearer overall picture of the disease process.

For example, results from epidemiological studies suggest that anti-inflammatory drugs (e.g., ibuprofen) and antioxidant compounds (e.g., vitamin E) both offer some protection against Alzheimer's disease. Although inflammation is linked to oxidant stress and its associated tissue damage, it would be useful to know whether and to what degree these processes, independently or in concert, drive the progression of the disease. And which class of drugs -- anti-inflammatories or antioxidants -- offers the greatest potential benefit to patients?

"People debate the initiating cause of Alzheimer's disease, but there's general agreement that there is an inflammatory component, and inflammation is associated with oxidant stress," says FitzGerald. "So, it becomes relevant whether drug targets associated with inflammation will represent distinct or overlapping targets from those involved in oxidation. In other words, if we give a patient an anti-inflammatory, should we expect any additional benefit from an antioxidant vitamin or drug? Currently, we don't know the answer. Our ongoing studies should begin to address that question."

The innovative measurement technique used in all of these experiments was developed in FitzGerald's laboratory in collaboration with Joshua Rokach, PhD, a chemist at the Florida Institute of Technology and coauthor on the current report. It assesses the levels in body fluids or tissues of certain biochemicals called isoprostanes. These isoprostanes are stable byproducts of free-radical catalyzed damage to lipids, or fatty molecules, found throughout the body, and they serve as quantitative markers for that damage.

The lead author on the study is Domenico Pratico, MD, an assistant professor of pharmacology at Penn. Coauthors on the study, in addition to Rokach, include Virginia M.-Y. Lee, PhD, and John Q. Trojanowski, MD, PhD, both professors of pathology and laboratory medicine at Penn. Funding for the work was provided by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "New Evidence Points To Role For Free Radicals In Alzheimer's Disease." ScienceDaily. ScienceDaily, 9 December 1998. <www.sciencedaily.com/releases/1998/12/981209080830.htm>.
University Of Pennsylvania Medical Center. (1998, December 9). New Evidence Points To Role For Free Radicals In Alzheimer's Disease. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/1998/12/981209080830.htm
University Of Pennsylvania Medical Center. "New Evidence Points To Role For Free Radicals In Alzheimer's Disease." ScienceDaily. www.sciencedaily.com/releases/1998/12/981209080830.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins