Featured Research

from universities, journals, and other organizations

New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements

Date:
December 15, 1998
Source:
University Of Pennsylvania Medical Center
Summary:
Scientists at the University of Pennsylvania Medical Center have developed a novel gene therapy treatment that permanently blocks the age-related loss of muscle size and strength in mice. Mice, like humans and all mammals, lose up to a third of their muscle mass and power with age. In humans, the result is an advancing weakness in the elderly that can lead to unsteadiness and impaired mobility, increased susceptibility to falls and injury, and joint stress and degeneration.

Scientists at the University of Pennsylvania Medical Center have developed a novel gene therapy treatment that permanently blocks the age-related loss of muscle size and strength in mice. Mice, like humans and all mammals, lose up to a third of their muscle mass and power with age. In humans, the result is an advancing weakness in the elderly that can lead to unsteadiness and impaired mobility, increased susceptibility to falls and injury, and joint stress and degeneration.

Even in young adult mice, the new treatment increased muscle strength by a dramatic 15 percent over untreated muscle. But in older mice, the improvement was even more remarkable: The researchers documented a 27 percent increase in strength over untreated muscle in these mice -- fully restoring their strength to what it was in young adulthood.

The technique suggests human therapies that could reverse the feebleness associated with old age or counter the muscle-wasting effects of muscular dystrophies and related diseases. It also raises the possibility, however, that the technique could be used -- or abused -- for athletic or cosmetic enhancements.

Results from the experimental study will be presented at the 38th annual meeting of the American Society for Cell Biology in San Francisco on December 14 and will be published in the December 22 issue of the Proceedings of the National Academy of Sciences. (Copies of the paper are available to reporters through the journal's news office, reachable by telephone at 202-334-2138 or by e-mail at pnasnews@nas.edu.)

"Our results show that it may be possible to preserve muscle size and strength in old age using this approach," says H. Lee Sweeney, PhD, professor of physiology and senior investigator on the study. "We're now looking to see whether the technique might also be used to increase muscle strength in diseases such as muscular dystrophy."

To develop the new treatment, the researchers took advantage of the ability of some viruses to integrate their genetic material into the cells they infect. For these experiments, they selected an adeno-associated virus, or AAV, known to be highly efficient at introducing its genes into target cells. They then stripped the AAV of its own disease-causing -- and immune-system provoking -- genes and reloaded it with a normally occurring gene called insulin-like growth factor I, or IGF-I, as well as a muscle-specific promoter to drive high production levels of the growth factor. The investigators then injected the engineered virus into the muscles of the mice.

IGF-I is a growth factor critical in the process of muscle repair. Under normal circumstances, damaged muscles release quantities of IGF-I as an activation signal to neighboring cells known as satellite cells. Satellite cells are muscle stem cells -- progenitor cells -- that become functional muscle cells after activation and then migrate into the muscle to repair it.

The researchers theorized that age-related muscle loss might be the result of a declining efficiency in the satellite-cell activation process due to a decreased IGF-I signaling capability with age on the part of muscles in need of repair. They hypothesized that using gene therapy to command high levels of IGF-I production in aging muscle might stimulate more effective repair and regeneration by the satellite cells, which proved to be the case.

If this work is to be extended into humans, a number of ethical considerations will need to be addressed, according to senior author Sweeney.

"The beneficial effects of this gene therapy could easily be used in humans for athletic or even cosmetic enhancements and not only for limiting age-related muscle loss or for treating diseases of the muscle," Sweeney notes.

Elisabeth R. Barton-Davis, PhD, is the lead author on the study, and Daria I. Shoturma is a coauthor. The remaining coauthors are Antonio Musaro, PhD, and Nadia Rosenthal, PhD, both based at Massachusetts General Hospital. This work was supported by grants from the National Institutes of Health and the Muscular Dystrophy Association.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements." ScienceDaily. ScienceDaily, 15 December 1998. <www.sciencedaily.com/releases/1998/12/981215081229.htm>.
University Of Pennsylvania Medical Center. (1998, December 15). New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1998/12/981215081229.htm
University Of Pennsylvania Medical Center. "New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements." ScienceDaily. www.sciencedaily.com/releases/1998/12/981215081229.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins