Featured Research

from universities, journals, and other organizations

New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements

Date:
December 15, 1998
Source:
University Of Pennsylvania Medical Center
Summary:
Scientists at the University of Pennsylvania Medical Center have developed a novel gene therapy treatment that permanently blocks the age-related loss of muscle size and strength in mice. Mice, like humans and all mammals, lose up to a third of their muscle mass and power with age. In humans, the result is an advancing weakness in the elderly that can lead to unsteadiness and impaired mobility, increased susceptibility to falls and injury, and joint stress and degeneration.

Scientists at the University of Pennsylvania Medical Center have developed a novel gene therapy treatment that permanently blocks the age-related loss of muscle size and strength in mice. Mice, like humans and all mammals, lose up to a third of their muscle mass and power with age. In humans, the result is an advancing weakness in the elderly that can lead to unsteadiness and impaired mobility, increased susceptibility to falls and injury, and joint stress and degeneration.

Even in young adult mice, the new treatment increased muscle strength by a dramatic 15 percent over untreated muscle. But in older mice, the improvement was even more remarkable: The researchers documented a 27 percent increase in strength over untreated muscle in these mice -- fully restoring their strength to what it was in young adulthood.

The technique suggests human therapies that could reverse the feebleness associated with old age or counter the muscle-wasting effects of muscular dystrophies and related diseases. It also raises the possibility, however, that the technique could be used -- or abused -- for athletic or cosmetic enhancements.

Results from the experimental study will be presented at the 38th annual meeting of the American Society for Cell Biology in San Francisco on December 14 and will be published in the December 22 issue of the Proceedings of the National Academy of Sciences. (Copies of the paper are available to reporters through the journal's news office, reachable by telephone at 202-334-2138 or by e-mail at pnasnews@nas.edu.)

"Our results show that it may be possible to preserve muscle size and strength in old age using this approach," says H. Lee Sweeney, PhD, professor of physiology and senior investigator on the study. "We're now looking to see whether the technique might also be used to increase muscle strength in diseases such as muscular dystrophy."

To develop the new treatment, the researchers took advantage of the ability of some viruses to integrate their genetic material into the cells they infect. For these experiments, they selected an adeno-associated virus, or AAV, known to be highly efficient at introducing its genes into target cells. They then stripped the AAV of its own disease-causing -- and immune-system provoking -- genes and reloaded it with a normally occurring gene called insulin-like growth factor I, or IGF-I, as well as a muscle-specific promoter to drive high production levels of the growth factor. The investigators then injected the engineered virus into the muscles of the mice.

IGF-I is a growth factor critical in the process of muscle repair. Under normal circumstances, damaged muscles release quantities of IGF-I as an activation signal to neighboring cells known as satellite cells. Satellite cells are muscle stem cells -- progenitor cells -- that become functional muscle cells after activation and then migrate into the muscle to repair it.

The researchers theorized that age-related muscle loss might be the result of a declining efficiency in the satellite-cell activation process due to a decreased IGF-I signaling capability with age on the part of muscles in need of repair. They hypothesized that using gene therapy to command high levels of IGF-I production in aging muscle might stimulate more effective repair and regeneration by the satellite cells, which proved to be the case.

If this work is to be extended into humans, a number of ethical considerations will need to be addressed, according to senior author Sweeney.

"The beneficial effects of this gene therapy could easily be used in humans for athletic or even cosmetic enhancements and not only for limiting age-related muscle loss or for treating diseases of the muscle," Sweeney notes.

Elisabeth R. Barton-Davis, PhD, is the lead author on the study, and Daria I. Shoturma is a coauthor. The remaining coauthors are Antonio Musaro, PhD, and Nadia Rosenthal, PhD, both based at Massachusetts General Hospital. This work was supported by grants from the National Institutes of Health and the Muscular Dystrophy Association.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements." ScienceDaily. ScienceDaily, 15 December 1998. <www.sciencedaily.com/releases/1998/12/981215081229.htm>.
University Of Pennsylvania Medical Center. (1998, December 15). New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1998/12/981215081229.htm
University Of Pennsylvania Medical Center. "New Gene Therapy Strategy Keeps Muscles Strong In Old Age: Possibilities Seen For Disease Treatment, But Also For Athletic Or Cosmetic Enhancements." ScienceDaily. www.sciencedaily.com/releases/1998/12/981215081229.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins