Featured Research

from universities, journals, and other organizations

Immortalizing Enzyme Does Not Make Human Cells Cancerous

Date:
January 4, 1999
Source:
University Of Texas Southwestern Medical Center
Summary:
Scientists at UT Southwestern Medical Center at Dallas have shown that human cells grown in the laboratory and immortalized by the introduction of the enzyme telomerase are not transformed into cancer cells, perhaps clearing the way for safe, future medical applications.

DALLAS - December 29, 1998 - Scientists at UT Southwestern Medical Center at Dallas have shown that human cells grown in the laboratory and immortalized by the introduction of the enzyme telomerase are not transformed into cancer cells, perhaps clearing the way for safe, future medical applications.

Drs. Jerry Shay and Woodring Wright, UT Southwestern professors of cell biology and neuroscience, and their colleagues will report in the January 1999 issue of Nature Genetics that cells immortalized with telomerase, now more than 220 generations past their normal life span of 75 to 80 divisions, remain young and vigorous.

The cells exhibited none of the characteristics associated with cancer cells, such as chromosome instability, serum-independent growth, loss of contact inhibition and loss of cell-cycle checkpoint controls. In an accompanying article, collaborators at the Geron Corporation and academic colleagues demonstrate that the cells with introduced telomerase do not produce tumors in mice.

The fear that telomerase may cause cancer resulted because telomerase activity is a marker of cancer cells. While most normal cells, which have finite life spans, do not contain telomerase, more than 90 percent of cancer cells, which divide indefinitely, do.

"We clearly demonstrate that the expression of telomerase in cultured human cells does not cause cancer progression," said Wright, thereby reducing concerns that telomerase might act as an oncogene, a gene that can induce a cell to become malignant. "The abnormalities seen in cancer cells are due to other mutations; telomerase merely allows the cells to keep dividing."

A year ago the same researchers reported in Science (279:349-52, 1998) that telomerase introduced into human cells grown in the laboratory was sufficient to immortalize them. Their report proved that progressive shortening of telomeres - specific short pieces of deoxyribonucleic acid (DNA) that the enzyme telomerase adds back to the tips of chromosomes - is the biological clock that governs how many divisions a cell will go through.

With the new findings, the way now seems clear for research into new therapies for age-related diseases and for cancer - two ends of the same spectrum. The scientists emphasize, however, that additional studies will be necessary before the concepts are applied to humans.

"In the future I predict we will be attacking cancer by new combinatorial therapeutic approaches using DNA synthesis inhibitors, angiogenic inhibitors and telomerase inhibitors," Shay said. "The combination of these inhibitors would not only prevent the tumor from getting bigger, but each time the tumor cells divided, their telomeres would shorten. Eventually the cells would be unable to divide, and die."

The ability to immortalize human cells and retain normal behavior holds promise in several areas including biopharmaceutical research and transplantation medicine. The scientists believe this new technology has the potential to produce unlimited quantities of normal human cells of virtually any tissue type. Permanent, stable sources for normal human cells # instead of the animal cells or abnormal transformed human cells now available # may help in drug development, screening and testing. Genetic engineering of telomerase-immortalized cells also could help develop cellular models of human disease.

In the future it should be feasible to immortalize a patient's own blood stem cells, eliminating the need for donor bone marrow and avoiding immune rejection. The same technology could be applied to the production of insulin-producing cells for patients with insulin-dependent diabetes mellitus; cartilage cells for those with osteoarthritis and rheumatoid arthritis; blood vessel-forming cells for cardiac patients with angina, stroke or arterial insufficiency; skin cells for burn patients and patients with severe wounds; muscle stem cells for treating muscular dystrophy patients; and the cosmetic production of collagen.

"The goal of our research is to increase our health span, not necessarily our life span, by finding out how to keep our aging - but healthy - cells growing and how to make our cancer cells senescent," said first author Dr. Carmela Morales, a research fellow in internal medicine and a Robert Wood Johnson scholar. "We believe that telomerase is an important target both for the potential treatment of age-related disease and for cancer."

Other UT Southwestern investigators involved in this research included former research fellow Dr. Shawn Holt; cell biology and neuroscience research fellows Dr. Michel Ouellette and Dr. Kiran Kaur; pharmacology research fellow Dr. Ying Yan; Dr. Michael White, assistant professor of cell biology and neuroscience; and Dr. Kathleen Wilson, assistant professor of pathology.

The investigators' Web site is at: http://www.swmed.edu/home_pages/cellbio/shay/


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center. "Immortalizing Enzyme Does Not Make Human Cells Cancerous." ScienceDaily. ScienceDaily, 4 January 1999. <www.sciencedaily.com/releases/1999/01/990104073956.htm>.
University Of Texas Southwestern Medical Center. (1999, January 4). Immortalizing Enzyme Does Not Make Human Cells Cancerous. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1999/01/990104073956.htm
University Of Texas Southwestern Medical Center. "Immortalizing Enzyme Does Not Make Human Cells Cancerous." ScienceDaily. www.sciencedaily.com/releases/1999/01/990104073956.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins