Featured Research

from universities, journals, and other organizations

Penn State Engineers Develop New Simulation For Ultrafine Particle Growth Process

Date:
February 11, 1999
Source:
Penn State
Summary:
Penn State engineers have developed a new simpler computer simulation for ultrafine particle size growth and distribution that is potentially applicable to processes ranging from powdered milk production to ceramic membrane development to air pollution control.

University Park, Pa. --- Penn State engineers have developed a new simpler computer simulation for ultrafine particle size growth and distribution that is potentially applicable to processes ranging from powdered milk production to ceramic membrane development to air pollution control.

Dr. Themis Matsoukas, assistant professor of chemical engineering and leader of the project, says the new simulation is not only simpler than the others available, but is also fast, accurate and uses only modest amounts of computing power.

Matsoukas and his research group are using the simulation to understand the grouping and breakup processes that ultrafine titanium dioxide particles undergo before they reach their final size. Formation of ultrafine, nanometer-sized titanium dioxide particles, about the size of a virus, is characterized by rapid aggregation of large particle groups followed by slow breakup of these groups. The breakup or de-aggregation can take hours or days depending on the processing conditions.

The new simulation can accurately predict how the size and distribution of the particle groups occur over time. Some results from the simulation have already been confirmed and verified by comparison with experimental results.

"We haven't yet applied the simulation to other particulate materials. However, it could potentially be done for any powder of interest, powdered milk, for example. The simulation could also be used to model the formation and behavior of aerosols, sol/gel particle producing systems or even aggregates of pollutants in the atmosphere," says the Penn State researcher.

Matsoukas chose to model titanium dioxide nanoparticle formation because of current interest in using metal oxides in ceramic membranes for gas separation. The size of the particles is important to the activity of the membrane in this application and nanosize particles are difficult to obtain in non-aggregated form.

He and his group have shown that stirring induces aggregation of titanium dioxide nanoparticles and affects their stability but has little effect on the rate of breakup. The presence of alcohols also promotes aggregation as does coating the nanoparticles with polymers. They have found breakup to be promoted by the type of starting material (alkoxide type) and acidity.

The new simulation is based on a standard Monte Carlo method, a technique for estimating the solution of a mathematical problem by artificial sampling. In the new simulation, however, the Penn State researchers simplify the solution by using a sample of fixed size, regardless of whether the actual growth process results in a net loss via aggregation or gain via breakup.

They have shown that, by using this technique, they can obtain accurate results for very long growth times in about four minutes on a mainframe computer.

The Penn State research team's results on titanium dioxide were detailed in a series of papers at the '98 American Institute of Chemical Engineering meeting in November. The simulation method and comparison with numerical and theoretical solutions is detailed in the paper, "Constant-number Monte Carlo Simulation of Population Balances," in a recent issue of the journal, Chemical Engineering Science.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Penn State Engineers Develop New Simulation For Ultrafine Particle Growth Process." ScienceDaily. ScienceDaily, 11 February 1999. <www.sciencedaily.com/releases/1999/02/990211072401.htm>.
Penn State. (1999, February 11). Penn State Engineers Develop New Simulation For Ultrafine Particle Growth Process. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1999/02/990211072401.htm
Penn State. "Penn State Engineers Develop New Simulation For Ultrafine Particle Growth Process." ScienceDaily. www.sciencedaily.com/releases/1999/02/990211072401.htm (accessed July 31, 2014).

Share This




More Computers & Math News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services


Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins