Featured Research

from universities, journals, and other organizations

Artificial Muscles To Be Used On Robotic Space Explorers

Date:
February 22, 1999
Source:
National Aeronautics And Space Administration
Summary:
Artificial muscles that should give space robots animal-like flexibility and manipulation ability will get their first test on a small NASA rover destined to explore an asteroid.

Artificial muscles that should give space robots animal-like flexibility and manipulation ability will get their first test on a small NASA rover destined to explore an asteroid.

Under development by Dr. Yoseph Bar-Cohen of NASA's Jet Propulsion Laboratory, Pasadena, CA, the artificial muscles are based on a simple, lightweight strip of highly flexible plastic that bends and functions similarly to human fingers when electrical voltage is applied to it.

Bar-Cohen and a small team of scientists and engineers are working to turn these strips into grippers and strings which can grab and lift loads, among many other potential uses. These strips and strings, known as artificial muscles or electroactive polymers (EAPs), have the potential to greatly simplify robotic spacecraft tasks. The technology could lead in the future to the development of insect-like robots that emulate biological creatures.

Years from now, these devices could also conceivably replace damaged human muscles, leading to partially "bionic men" and "bionic women" of the future, according to Bar-Cohen and his fellow researchers. "My hope is someday to see a handicapped person jogging to the grocery store using this technology," said Bar-Cohen, leader of JPL's Nondestructive Evaluation and Advanced Actuator Technologies unit, although such "blue sky" medical applications, even if proven feasible, may be decades away.

In the near-term, two EAP actuators are planned for use as miniature wipers to clear dust off the viewing windows of optical and infrared science instruments on the Mu Space Engineering Spacecraft (MUSES-CN) nanorover. This mission, led by the Japanese space agency ISAS, is designed to land the palm-sized rover on an asteroid following its 2002 launch, and return a sample of the asteroid to Earth.

"That's just the tip of the iceberg when it comes to space applications," Bar-Cohen added. "Electroactive polymers are changing the paradigm about the complexity of robots. In the future, we see the potential to emulate the resilience and fracture tolerance of biological muscles, enabling us to build simple robots that dig and operate cooperatively like ants, soft-land like cats or traverse long distances like a grasshopper."

Unlike human hands, which move by contracting and relaxing muscles, typical robotic arms utilize gears, hydraulics and other expensive, heavy, power-hungry parts. In future planetary exploration missions, where robots will need to perform tasks like collecting and manipulating samples of soil or ice, such mass and complexity becomes a problem. To meet these challenges, Bar-Cohen and his team have developed two types of artificial muscles that respond quickly to small amounts of electricity by lengthening or bending.

The first is a flexible polymer ribbon constructed from chains of carbon, fluorine and oxygen molecules. When an electric charge flows through the ribbon, charged particles in the polymer get pushed or pulled on the ribbon's two sides, depending on the polarity. The net result: The ribbon bends. Using four such ribbons, Bar-Cohen has fashioned a gripper that can pick up a rock.

The second consists of thin sheets wrapped into cigar-like cylinders that stretch when one side of a sheet is given a positive charge and the other a negative charge. These charges cause the wrapped sheet to contract toward the center of the cylinder, and this constriction forces the cylinder to expand lengthwise. When the power supply is turned off, the cylinder relaxes, enabling it to lift or drop loads.

Eight individual researchers or groups from around the world will demonstrate their work on artificial muscles as part of the Society of Photo-Optical Instrumentation Engineers' (SPIE) 6th Annual International Symposium on Smart Structures and Materials in Newport Beach, CA, in early March, with a media session planned for the evening of March 2. Contact Pat Wright of the SPIE (360/676-3290, x609) for further information on this event.

Further information about Bar-Cohen's research and related activities is available at:

http://ndeaa.jpl.nasa.gov

A three-page fact sheet on the MUSES-CN rover is available at:

http://www.jpl.nasa.gov/facts/muses.pdf

JPL is a division of the California Institute of Technology, Pasadena, CA.


Story Source:

The above story is based on materials provided by National Aeronautics And Space Administration. Note: Materials may be edited for content and length.


Cite This Page:

National Aeronautics And Space Administration. "Artificial Muscles To Be Used On Robotic Space Explorers." ScienceDaily. ScienceDaily, 22 February 1999. <www.sciencedaily.com/releases/1999/02/990222073913.htm>.
National Aeronautics And Space Administration. (1999, February 22). Artificial Muscles To Be Used On Robotic Space Explorers. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1999/02/990222073913.htm
National Aeronautics And Space Administration. "Artificial Muscles To Be Used On Robotic Space Explorers." ScienceDaily. www.sciencedaily.com/releases/1999/02/990222073913.htm (accessed October 2, 2014).

Share This



More Space & Time News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Astronomers Spot Largest, Brightest Solar Flare Ever

Astronomers Spot Largest, Brightest Solar Flare Ever

Newsy (Oct. 1, 2014) — The initial blast from the record-setting explosion would have appeared more than 10,000 times more powerful than any flare ever recorded. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins