Featured Research

from universities, journals, and other organizations

New Theory Provides Better Understanding Of Transistors

Date:
March 5, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
The p-n junction diode is the basic element in nearly all semiconductor devices. Trillions of these diodes -- which permit current to flow only in one direction -- are produced daily. More than 10 million p-n junction diodes can be found in a typical personal computer. However, since the invention of the transistor 50 years ago, certain characteristics of the p-n junction have been poorly understood and improperly described in textbooks. Now, a new theory of p-n junction performance promises to resolve past misconceptions, says a University of Illinois researcher.

CHAMPAIGN, Ill. -- The p-n junction diode is the basic element in nearly all semiconductor devices. Trillions of these diodes -- which permit current to flow only in one direction -- are produced daily. More than 10 million p-n junction diodes can be found in a typical personal computer.

However, since the invention of the transistor 50 years ago, certain characteristics of the p-n junction have been poorly understood and improperly described in textbooks. Now, a new theory of p-n junction performance promises to resolve past misconceptions, says a University of Illinois researcher.

"It may sound strange, but the precise physics of what makes these devices work has not been fully understood," said Karl Hess, a U. of I. Swanlund Professor of electrical and computer engineering and a researcher at the university's Beckman Institute for Advanced Science and Technology. "We found deficiencies in every textbook description of p-n junction diodes. For example, the diffusion capacitance -- the conductance property for alternating current -- was predicted incorrectly in all cases."

Hess and Steven Laux, a researcher at the IBM Thomas J. Watson Research Center who spent a yearlong sabbatical at Illinois, combined computer simulations and numerical analyses to come up with a much more complete understanding of p-n junction performance. They developed a mathematical expression that provides excellent agreement between precise computation and analytical approximation.

"This expression permitted us to identify individual contributions to the diffusion capacitance, and to separate these contributions as they arise from the space-charge or quasi-neutral regions," Laux said. "We therefore have introduced a new set of alternating-current boundary conditions and a more precise treatment of the distribution of the mobile charge."

One surprising result of the new theory is that the diffusion capacitance for long diodes is different from what had been assumed. "Instead of growing exponentially, as taught in all textbooks, the diffusion capacitance actually vanishes in many cases," Hess said.

Why had researchers not identified this before, and how could trillions of well-working p-n junctions have been made without this knowledge?

"Some of the mysteries of p-n junction performance were 'explained' in the past by researchers who inserted erroneous terms into their equations," Hess said. "Fortunately for previous analyses, the mistakes were biggest for long diodes, while most diodes are relatively short. Nevertheless, even very short diodes show deviations from the standard understanding at high forward current densities."

In addition to replacing the previously incomplete and incorrect theories in future textbooks, the new theory should be useful to researchers working with certain types of p-n junctions, such as those used in semiconductor laser diodes.

Laux and Hess describe their new theory in the February issue of IEEE Transactions on Electron Devices.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "New Theory Provides Better Understanding Of Transistors." ScienceDaily. ScienceDaily, 5 March 1999. <www.sciencedaily.com/releases/1999/03/990305070639.htm>.
University Of Illinois At Urbana-Champaign. (1999, March 5). New Theory Provides Better Understanding Of Transistors. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1999/03/990305070639.htm
University Of Illinois At Urbana-Champaign. "New Theory Provides Better Understanding Of Transistors." ScienceDaily. www.sciencedaily.com/releases/1999/03/990305070639.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins