Featured Research

from universities, journals, and other organizations

Researchers Find Unexpected Feature In Plankton Nervous System

Date:
April 15, 1999
Source:
University Of Hawaii
Summary:
Few people ever observe the world's most prevalent animal, but scrutiny by University of Hawaii researchers may change the way scientists look at the little insect-like ocean-dwelling invertebrates known as calanoid copepods. The UH researchers have discovered that nerve cells of the species Undinula vulgaris are coated with myelin -- a substance generally thought to be limited, with very few exceptions, to humans and other vertebrates.

Few people ever observe the world's most prevalent animal, but scrutiny by University of Hawaii researchers may change the way scientists look at the little insect-like ocean-dwelling invertebrates known as calanoid copepods. The UH researchers have discovered that nerve cells of the species Undinula vulgaris are coated with myelin -- a substance generally thought to be limited, with very few exceptions, to humans and other vertebrates. If upheld, their findings, which are reported in the April 15 issue of the journal Nature, will require revision of basic biology textbook discussions of the difference between vertebrates and invertebrates.

Researchers at the University of Hawaii at Manoa's Pacific Biomedical Research Center, observed myelin in transmission electron microscope images of the calanoid copepods collected in Oahu's Kaneohe Bay. The authors had previously observed that Undinula vulgaris are unusually fast in sprinting from danger -- responding to stimuli about a hundred times faster than humans. Myelin is a white fatty sheath that coats parts of the vertebrate nervous system, including the long axons of nerve cells. Like insulation on an electric wire, myelin protects and speeds the electrical signal, providing a competitive advantage for organisms that must respond quickly to capture food or escape predators. Such an advantage is particularly important for large animals, in which nerve signals must travel long distances from sensory cells to brain and brain to muscles, and scientists had assumed myelin was a feature nearly exclusive to vertebrates.

Most calanoid copepods are only 3 millimeters long or less and eat phytoplankton (plant plankton), other zooplankton or detritus. The most prevalent of the zooplankton, they constitute the biggest source of protein in the ocean and form a critical link in the marine food chain between the phytoplankton on which they feed and the krill, fish and whales that feed on them. In essence, they are the insects of the sea -- more prevalent but harder to study than their land-based counterparts.

The Pacific Biomedical Research Center team studies the behavior and morphology of copepods, particularly how anatomy and structure relate to sensory perception and reaction. The copepods that have myelin surrounding their axons exhibit consistently and significantly faster response time to stimulus in laboratory tests. (Deeper dwelling copepods luminesce in response to danger and other copepods move away from stimuli, though more slowly.)

Team members include researchers Petra Lenz and Daniel Hartline, researcher and electron microscope supervisor Tina (Weatherby) Carvalho and graduate student April Davis. It was Davis who first noticed the characteristic onion-ring-like myelin circles around axons in copepod cross sections. Myelin-looking artifacts can occur as chemical fixation anomalies, so she and Carvalho confirmed the results by preparing samples using an ultra-rapid freezing technique.

Because myelin does not occur in less-evolved copepods, it appears to have developed separately from that of vertebrates and other invertebrates, notes Lenz. The researchers' work has implications for the study of evolution as well as the understanding of the biology of the oceans.

The copepod research is funded by a grant from the National Science Foundation Division of Integrative Biology and neuroscience. UH's electron microscope facility is supported by the National Institute of Health's Research Centers in Minority Institutions Program.

###

Related Web Material:

copepod research, http://www.pbrc.hawaii.edu/~petra/copepod.html

copepod image, http://www.pbrc.hawaii.edu/bemf/microangela/pleuro.htm

copepod myelin image, http://www.pbrc.hawaii.edu/~petra/myelin.html


Story Source:

The above story is based on materials provided by University Of Hawaii. Note: Materials may be edited for content and length.


Cite This Page:

University Of Hawaii. "Researchers Find Unexpected Feature In Plankton Nervous System." ScienceDaily. ScienceDaily, 15 April 1999. <www.sciencedaily.com/releases/1999/04/990415064510.htm>.
University Of Hawaii. (1999, April 15). Researchers Find Unexpected Feature In Plankton Nervous System. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/1999/04/990415064510.htm
University Of Hawaii. "Researchers Find Unexpected Feature In Plankton Nervous System." ScienceDaily. www.sciencedaily.com/releases/1999/04/990415064510.htm (accessed August 2, 2014).

Share This




More Mind & Brain News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Work Can Be Stressful, But Is Unemployment Worse?

Work Can Be Stressful, But Is Unemployment Worse?

Newsy (Aug. 1, 2014) A new study shows stress at work can be hard on your health, but people who are unemployed might be at even greater risk of health problems. Video provided by Newsy
Powered by NewsLook.com
Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Newsy (July 31, 2014) Google says it is following Europe's new "Right To Be Forgotten Law," which eliminates user information upon request, but only to a certain degree. Video provided by Newsy
Powered by NewsLook.com
Stroke Signs: Three Hour Deadline

Stroke Signs: Three Hour Deadline

Ivanhoe (July 31, 2014) Sometimes the signs of a stroke are far from easy to recognize. Learn from one young father’s story on the signs of a stroke. Video provided by Ivanhoe
Powered by NewsLook.com
Grain Brain May Be Harming Us

Grain Brain May Be Harming Us

Ivanhoe (July 31, 2014) Could eating carbohydrates be harmful to our brain health? Find out what one neurologist says about changing our diets. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins