Featured Research

from universities, journals, and other organizations

Chemical Microscope Enabled: Imaging Of Materials At The Nanometer Scale

Date:
May 13, 1999
Source:
Max Planck Society
Summary:
The modern way of microscopy relies on a tiny tip scanning over a surface to sense feeble currents or forces, to build a relief image in the computer. That the tip can also sense the infrared vibrations of the surface material, thus revealing the material´s chemical composition, is described by researchers at the Max Planck Institute for Biochemistry (Max-Planck-Institut für Biochemie), Martinsried/Germany, in their letter to Nature appearing on May 13.

The modern way of microscopy relies on a tiny tip scanning over a surface to sense feeble currents or forces, to build a relief image in the computer. That the tip can also sense the infrared vibrations of the surface material, thus revealing the material´s chemical composition, is described by researchers at the Max Planck Institute for Biochemistry (Max-Planck-Institut für Biochemie), Martinsried/Germany, in their letter to Nature appearing on May 13.

The classical optical microscope is limited in its resolution by the wavelength, in practice to just below one micrometer. To visualize nanoscale structures - which are of growing interest in electronics, materials and biology - one can use the electron microscope which needs however high vacuum and special sample preparation. More generally usable are the scanning tip microscopes such as the tunneling or atomic force microscope, who function by moving a sharp sensor tip along a surface. Feeble electric currents or mechanic forces are registered and compilated in a computer to form the surface´s relief image or topography. These techniques can however not find out which chemical substances are present where on the surface.

The physicists at the Max Planck Institute show that infrared waves can accomplish just this. They employ a well-known material response, the infrared vibrational absorption, to identify the chemical composition of the surface. While the use of infrared spectroscopy for the identification of macroscopic samples has been a standard technique in chemical and semiconductor plants, as well as in physics and biology research, the surprising news is that this long-wavelength technique should be combinable with the scanning tip microscope principle.

In the experiment, a metal tip moves close to a polymer film composed of different compounds, and the surface topography is recorded in usual AFM (atomic force microscope) manner. At the same time the tip is illuminated by an infrared beam. Much as by an antenna the infrared wave is concentrated at the very apex of the tip where it senses the local absorption of the closeby sample. The compiled infrared image overlaid with the topography shows where the more absorbing substance is, by being darker. When a different infrared wavelength is employed the infrared image changes its contrast accordingly.

The letter accomplishes demonstrating how to identify material composition on a nanoscale, using a scanning metal tip. This includes a theoretical description of the infrared near-field interaction which is predicted to be enhanced, an effect already partly verified in the experiment. The enhancement is due to the metal electrons of the tip lending absorption strength to the sample vibration. The enhancement mechanism strongly amplifies the potential of the new microscope because weaker absorbers can be identified and the resolving power can be increased.

Other techniques of identifying material composition on a nanoscale are not available. The optical near-field microscope is color-blind concerning the material-specific absorption resonances because these occur at infrared wavelengths in the range of 3 to 30 micrometers.

The results lay the foundation to develop a generally usable infrared microscope with at least 100 nm resolution, possibly 10 nm or even better. The next steps are to achieve a dual or multifrequency simultaneous imaging, to be followed by broadband infrared operation. Suitable infrared lasers exist. The chemical microscope will be complete once a full infrared spectrum can be mapped at each pixel, revealing the local material´s identity. Apart from widening the infrared illumination spectrum the development will have to focus on sharper tips, sharper optical alignment and tighter mechanical control.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Chemical Microscope Enabled: Imaging Of Materials At The Nanometer Scale." ScienceDaily. ScienceDaily, 13 May 1999. <www.sciencedaily.com/releases/1999/05/990513065521.htm>.
Max Planck Society. (1999, May 13). Chemical Microscope Enabled: Imaging Of Materials At The Nanometer Scale. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1999/05/990513065521.htm
Max Planck Society. "Chemical Microscope Enabled: Imaging Of Materials At The Nanometer Scale." ScienceDaily. www.sciencedaily.com/releases/1999/05/990513065521.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins