Featured Research

from universities, journals, and other organizations

Relativistic Effects Play Major Role In Neutron Star Mergers

Date:
July 12, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
A powerful numerical simulation developed at the University of Illinois has revealed that gravitational waves -- ripples in the fabric of space -- play a major role in coalescing neutron stars. The results of the simulation may aid in the future detection of gravitational waves.

CHAMPAIGN, Ill. -- A powerful numerical simulation developed at the University of Illinois has revealed that gravitational waves -- ripples in the fabric of space -- play a major role in coalescing neutron stars. The results of the simulation may aid in the future detection of gravitational waves.

"General relativity predicts that a pair of neutron stars orbiting one another will radiate energy in the form of gravitational waves," said Alan Calder, a researcher at the National Center for Supercomputing Applications (NCSA) at the U. of I. "This loss of energy will cause the stars to move closer and closer together, until they eventually collide."

The gravitational waves produced in such events are expected to be observed by highly specialized detectors -- such as the Laser Interferometric Gravitational-Wave Observatory -- that are being built. Because gravitational waves are extremely weak, however, theoretical templates of the anticipated waveforms will be necessary to extract the signal from the noisy background.

"A neutron star is the small but dense stellar core that remains after a supernova explosion," Calder said. "By using computer simulations and scientific visualization to study the merger of two neutron stars, we can make predictions in anticipation of detectors coming on line to actually measure the waveforms."

To run the simulation, Calder and his colleagues -- Douglas Swesty, a visiting research professor at the U. of I. and a professor of physics and astronomy at the State University of New York at Stony Brook; Edward Wang, a graduate student in the department of physics and astronomy at SUNY-Stony Brook; and NCSA visualization expert David Bock -- used the SGI/Cray Origin2000 supercomputer at the National Computational Science Alliance.

The researchers initially ran the simulation with only Newtonian hydrodynamics; then they added a post-Newtonian "correction" in the form of a relativistic radiation reaction.

"The radiation reaction dramatically altered the dynamics of the merger," said Calder, who demonstrated the simulation at the American Astronomical Society meeting in Chicago on June 3. "The reaction caused the stars to coalesce much faster, and led to very different gravitational waveforms. We also found that the final coalesced objects differed both in structure and in total angular momentum."

One particularly striking feature seen in the simulation is the formation of tidal arms during the merger that transport a substantial amount of material into a rapidly rotating disk surrounding the merger. Most of the energy that is being radiated in the form of gravitational waves comes from these tidally distorted regions, not from the most massive or most dense parts of the stars.

Although post-Newtonian methods "are extremely useful for predicting gravitational waveforms during the early stages of the inspiral," Calder said, "predicting the later stages -- where tidal effects and neutron star structure become significant -- will require a fully relativistic simulation."


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Relativistic Effects Play Major Role In Neutron Star Mergers." ScienceDaily. ScienceDaily, 12 July 1999. <www.sciencedaily.com/releases/1999/07/990712080808.htm>.
University Of Illinois At Urbana-Champaign. (1999, July 12). Relativistic Effects Play Major Role In Neutron Star Mergers. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/1999/07/990712080808.htm
University Of Illinois At Urbana-Champaign. "Relativistic Effects Play Major Role In Neutron Star Mergers." ScienceDaily. www.sciencedaily.com/releases/1999/07/990712080808.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins