Featured Research

from universities, journals, and other organizations

Relativistic Effects Play Major Role In Neutron Star Mergers

Date:
July 12, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
A powerful numerical simulation developed at the University of Illinois has revealed that gravitational waves -- ripples in the fabric of space -- play a major role in coalescing neutron stars. The results of the simulation may aid in the future detection of gravitational waves.

CHAMPAIGN, Ill. -- A powerful numerical simulation developed at the University of Illinois has revealed that gravitational waves -- ripples in the fabric of space -- play a major role in coalescing neutron stars. The results of the simulation may aid in the future detection of gravitational waves.

Related Articles


"General relativity predicts that a pair of neutron stars orbiting one another will radiate energy in the form of gravitational waves," said Alan Calder, a researcher at the National Center for Supercomputing Applications (NCSA) at the U. of I. "This loss of energy will cause the stars to move closer and closer together, until they eventually collide."

The gravitational waves produced in such events are expected to be observed by highly specialized detectors -- such as the Laser Interferometric Gravitational-Wave Observatory -- that are being built. Because gravitational waves are extremely weak, however, theoretical templates of the anticipated waveforms will be necessary to extract the signal from the noisy background.

"A neutron star is the small but dense stellar core that remains after a supernova explosion," Calder said. "By using computer simulations and scientific visualization to study the merger of two neutron stars, we can make predictions in anticipation of detectors coming on line to actually measure the waveforms."

To run the simulation, Calder and his colleagues -- Douglas Swesty, a visiting research professor at the U. of I. and a professor of physics and astronomy at the State University of New York at Stony Brook; Edward Wang, a graduate student in the department of physics and astronomy at SUNY-Stony Brook; and NCSA visualization expert David Bock -- used the SGI/Cray Origin2000 supercomputer at the National Computational Science Alliance.

The researchers initially ran the simulation with only Newtonian hydrodynamics; then they added a post-Newtonian "correction" in the form of a relativistic radiation reaction.

"The radiation reaction dramatically altered the dynamics of the merger," said Calder, who demonstrated the simulation at the American Astronomical Society meeting in Chicago on June 3. "The reaction caused the stars to coalesce much faster, and led to very different gravitational waveforms. We also found that the final coalesced objects differed both in structure and in total angular momentum."

One particularly striking feature seen in the simulation is the formation of tidal arms during the merger that transport a substantial amount of material into a rapidly rotating disk surrounding the merger. Most of the energy that is being radiated in the form of gravitational waves comes from these tidally distorted regions, not from the most massive or most dense parts of the stars.

Although post-Newtonian methods "are extremely useful for predicting gravitational waveforms during the early stages of the inspiral," Calder said, "predicting the later stages -- where tidal effects and neutron star structure become significant -- will require a fully relativistic simulation."


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Relativistic Effects Play Major Role In Neutron Star Mergers." ScienceDaily. ScienceDaily, 12 July 1999. <www.sciencedaily.com/releases/1999/07/990712080808.htm>.
University Of Illinois At Urbana-Champaign. (1999, July 12). Relativistic Effects Play Major Role In Neutron Star Mergers. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/1999/07/990712080808.htm
University Of Illinois At Urbana-Champaign. "Relativistic Effects Play Major Role In Neutron Star Mergers." ScienceDaily. www.sciencedaily.com/releases/1999/07/990712080808.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins