Featured Research

from universities, journals, and other organizations

Researchers Develop Novel Mouse Model Of Alzheimer's Disease

Date:
July 21, 1999
Source:
Case Western Reserve University
Summary:
An obstacle to understanding how Alzheimer's disease develops has been the lack of an accurate animal model for scientific study. Now, scientists in Cleveland report that they have developed novel genetically engineered mice that exhibit pathological characteristics of Alzheimer's disease.

An obstacle to understanding how Alzheimer's disease develops has been the lack of an accurate animal model for scientific study. Now, scientists in Cleveland report that they have developed novel genetically engineered mice that exhibit pathological characteristics of Alzheimer's disease. These mice will likely provide new insights into the disease and its treatment.

Related Articles


In work to be published in the August issue of the journal Nature Neuroscience, Bruce Lamb, assistant professor of genetics, and colleagues at Case Western Reserve University's School of Medicine and University Hospitals of Cleveland created the lines of mice using yeast artificial chromosomes to transfer pieces of human DNA into mice. The researchers incorporated into the mice entire copies of human genes that result in early-onset Alzheimer's disease in humans.

One gene encodes amyloid precursor protein (APP), the protein that gives rise to the characteristic amyloid deposits (beta-amyloid proteins) that occur in the brains of Alzheimer's disease patients. The other gene encodes presenilin-1 (PS-1), a protein that has been implicated in the biochemical processing of APP.

The researchers found that mice carrying the mutant form of APP developed amyloid deposits similar to those found in patients with Alzheimer's disease. Moreover, mice with two copies of the APP gene, or with both mutant genes, developed even more deposits.

"Higher levels of beta-amyloid protein are vital for the appearance of Alzheimer's disease pathology in mice, similar to what has been observed in humans with the genetic forms of the disease," said Lamb, who is also affiliated with the University Alzheimer Center in Cleveland. "In addition, further elevation of the levels of beta-amyloid accelerates the age of onset of pathological changes observed in the mice."

He said that additional experiments will be necessary to determine the relationship between the pathology observed in these transgenic mice and other characteristic signs of the disease, including neuronal cell loss and deficits in cognitive function.

"But as these mice contain the entire human genes involved in Alzheimer's disease, as opposed to smaller portions of the genes employed by other investigators, they will likely provide unique insights into the mechanism and progression of Alzheimer's disease in humans as well as provide a novel small animal model for testing therapeutics," Lamb said.

Funding supporting the work came from the National Institutes of Health, the American Health Assistance Foundation, and the Bristol-Meyers Squibb Pharmaceutical Research Institute.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Researchers Develop Novel Mouse Model Of Alzheimer's Disease." ScienceDaily. ScienceDaily, 21 July 1999. <www.sciencedaily.com/releases/1999/07/990721085858.htm>.
Case Western Reserve University. (1999, July 21). Researchers Develop Novel Mouse Model Of Alzheimer's Disease. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/1999/07/990721085858.htm
Case Western Reserve University. "Researchers Develop Novel Mouse Model Of Alzheimer's Disease." ScienceDaily. www.sciencedaily.com/releases/1999/07/990721085858.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Marijuana Nowhere Near As Deadly As Alcohol: Study

Marijuana Nowhere Near As Deadly As Alcohol: Study

Newsy (Feb. 25, 2015) A new study says marijuana is about 114 times less deadly than alcohol. Video provided by Newsy
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins