Featured Research

from universities, journals, and other organizations

Improvements Bring Chemical Oxygen-Iodine Laser Closer To Market

Date:
August 5, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
By enhancing the performance and lowering the operating costs of the chemical oxygen-iodine laser (COIL), researchers at the University of Illinois have helped to bring the device close to commercial application.

CHAMPAIGN, Ill. -- By enhancing the performance and lowering the operating costs of the chemical oxygen-iodine laser (COIL), researchers at the University of Illinois have helped to bring the device close to commercial application.

"Unlike most lasers, COIL can be scaled to very high power levels, in excess of 40 kilowatts," said David Carroll, a research scientist in the department of aeronautical and astronautical engineering at the U. of I. "And because COIL's wavelength of 1.3 microns can be transmitted through fiber-optic cable with very little loss, this laser is extremely well suited for applications needing high power and remote fiber optic delivery."

One such application is the decommissioning and dismantling of old nuclear facilities, Carroll said. "Not only can COIL rapidly cut through many materials, including iron, stainless steel and concrete, but laser cutting minimizes dust and fumes, thus reducing costly waste disposal. The use of a remote fiber-delivered COIL cutting tool in contaminated areas would also lower the risks to workers."

COIL was developed at the U.S. Air Force Research Laboratory (Kirtland Air Force Base, N.M.). To help commercialize the technology, the Air Force funded a Small Business Technology Transfer program with the U. of I. and STI Optronics in Bellevue, Wash.

As part of the program, Carroll and his U. of I. colleagues -- Wayne Solomon and Lee Sentman, both professors of aeronautical and astronautical engineering, and graduate student Darren King -- assembled a two-kilowatt COIL on the U. of I. campus. "This test bed gave us the capability to investigate new components and design techniques," Carroll said.

First demonstrated in 1977, the COIL system uses a series of chemical reactions to obtain excited atoms (or molecules) for subsequent lasing. A nozzle and buffer gas bring the primary flow to the supersonic velocities essential for operation.

"Using helium as the buffer gas, the Air Force had demonstrated a peak chemical efficiency of 27 percent," Carroll said. "But helium is relatively expensive, so one major objective of our program was to demonstrate high chemical efficiencies using less costly nitrogen as the buffer gas."

By developing an innovative nozzle design that was optimized for nitrogen, the researchers achieved a chemical efficiency of 23 percent. The redesigned nozzle also significantly reduced the amount of buffer gas required, further reducing the operating costs for a commercial COIL.

In addition to dismantling nuclear reactor facilities, COIL could be used in many other industrial applications, including shipbuilding, automotive manufacturing and heavy machinery manufacturing.

"The remote, flexible fiber-cutting tool could also be used underwater to seal small leaks in hulls without expensive dry-docking," Carroll said.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Improvements Bring Chemical Oxygen-Iodine Laser Closer To Market." ScienceDaily. ScienceDaily, 5 August 1999. <www.sciencedaily.com/releases/1999/08/990805070647.htm>.
University Of Illinois At Urbana-Champaign. (1999, August 5). Improvements Bring Chemical Oxygen-Iodine Laser Closer To Market. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/1999/08/990805070647.htm
University Of Illinois At Urbana-Champaign. "Improvements Bring Chemical Oxygen-Iodine Laser Closer To Market." ScienceDaily. www.sciencedaily.com/releases/1999/08/990805070647.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins