Featured Research

from universities, journals, and other organizations

Physicists Uncover Solution To Resolve Atomic Structure

Date:
September 14, 1999
Source:
University Of Arkansas
Summary:
University of Arkansas researchers have determined the structure of a technologically important telecommunications surface that scientists have debated for years. In the process, they have developed a new technique that may help solve other significant atomic structures and could revolutionize the telecommunications industry.

FAYETTEVILLE, Ark. -- University of Arkansas researchers have determined the structure of a technologically important telecommunications surface that scientists have debated for years. In the process, they have developed a new technique that may help solve other significant atomic structures and could revolutionize the telecommunications industry.

Their findings will be reported in an upcoming issue of Physical Review Letters.

University of Arkansas postdoctoral researcher Vincent LaBella , Paul Thibado, assistant professor of physics, researchers H. Yang and D. W. Bullock and colleagues Matthias Scheffler and Peter Kratzer at the Max Planck Institute in Berlin have resolved the atomic structure of Gallium Arsenide (GaAs), a material commonly used in making high-technology telephones, satellites, Global Positioning Systems and cellular phones. LaBella likened Gallium Arsenide's importance in telecommunications to that of silicon chips in personal computers.

Scientists have debated between four atomic structures for GaAs over the past 10 years, but until now no one has been able to single out one structure as the correct conformation. Without the correct structure, industry scientists and researchers have to use several models of the GaAs surface when building telecommunications equipment and experiment to see what works. Knowing the structure will save companies time and money, LaBella said.

"Knowing the structure is the starting point," LaBella said.

The researchers used Scanning Tunneling Microscopy (STM) at different voltages to examine the GaAs surface. The STM uses a small electron beam at a steady current to create a contour map of the surface. To keep the current stable, the STM tip moves up and down, depending upon the distance from the surface atoms, creating a contour map showing peaks and trenches containing atoms. At 3.0 volts, the researchers could see features on the peaks of the crystal, but the image of the structure in the trenches remained unclear.

At 2.1 volts, the trenches became well-defined, and fit the Beta-2 model, one of the four proposed models for GaAs.

After creating the image, the University of Arkansas group contacted Matthias Scheffler, a theoretical physicist at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin. Scheffler founded the institute specifically to model GaAs surfaces.

LaBella and Thibado asked Scheffler to mimic the circumstances they created in the lab using computer models, so they could see if theory agreed with, and gave an explanation for, their results. "STM alone can't give you the answer," LaBella said.

The models Scheffler's group generated not only agreed with the University of Arkansas results; they pointed to the reason why the structure can be seen at lower voltages. At higher voltages, the electron clouds that surround the atoms form a barrier that causes the STM tip to skip the trenches, leaving the researchers with no picture of what's in the trenches. But the electrons associated with the atoms cause an effect that changes the STM picture at different voltages.

"The electron clouds over the arsenic atoms retract at lower voltages, so the image becomes sharper," LaBella said.

LaBella also credited the group's well-sharpened tips, made of tungsten, with helping them resolve the structure. Dull tips may be so wide that they cannot fit in the trenches, making it difficult to get a clear image of the atomic structure within.

The University of Arkansas researchers spend days sharpening tips, and if they are not satisfied with the STM results, they go back to the drawing board and sharpen more tips, LaBella said. The theoretical models use an infinitely sharp tip, making the agreement between theory and data in this research even more significant, LaBella said.

The University of Arkansas research group has now turned to Indium Phosphide (InP), another technologically significant material which makes the highest-speed transistor in the world. About 10 different theoretical models exist for this surface, LaBella said.

Using the theory combined with the knowledge of the voltage-dependent resolution will help scientists better understand many of these technologically important surfaces, LaBella said.

"We wouldn't understand this mechanism without the theory. But without the experiment, the theorists could not prove they were right," he said.

EDITORS: Photographs are available at: http://pigtrail.uark.edu/news/aug99/thibado-UARK.jpg and http://pigtrail.uark.edu/news/aug99/thibado2-UARK.jpg


Story Source:

The above story is based on materials provided by University Of Arkansas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas. "Physicists Uncover Solution To Resolve Atomic Structure." ScienceDaily. ScienceDaily, 14 September 1999. <www.sciencedaily.com/releases/1999/09/990914082837.htm>.
University Of Arkansas. (1999, September 14). Physicists Uncover Solution To Resolve Atomic Structure. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/1999/09/990914082837.htm
University Of Arkansas. "Physicists Uncover Solution To Resolve Atomic Structure." ScienceDaily. www.sciencedaily.com/releases/1999/09/990914082837.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins