Featured Research

from universities, journals, and other organizations

Scientists Cause Human Cancer Cell Death By Inhibiting Telomerase

Date:
December 7, 1999
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Scientists at UT Southwestern Medical Center at Dallas caused the death of human cancer cells by inhibiting telomerase - the enzyme capable of immortalizing human cells. They developed small synthetic inhibitors against telomerase that when introduced into human cancer cells caused progressive telomere shortening and eventually cell death.

DALLAS -December 7, 1999 - Scientists at UT Southwestern Medical Center at Dallas caused the death of human cancer cells by inhibiting telomerase - the enzyme capable of immortalizing human cells. They developed small synthetic inhibitors against telomerase that when introduced into human cancer cells caused progressive telomere shortening and eventually cell death.

The study, published in today's issue of the Proceedings of the National Academy of Sciences, validates telomerase as a target for anti-cancer drug therapy.

Dr. David Corey, Dr. Jerry Shay and collaborators designed nucleotide sequence inhibitors to interact with complementary sequences in the telomerase gene, thereby preventing its activity. These inhibitors led to the progressive shortening of telomeres in human breast and prostate cancer-cell lines grown in the laboratory. The researchers also showed that if the inhibitor was withdrawn, the telomeres regained their initial lengths.

"The use of anti-telomerase synthetic inhibitors should open up a new class of therapeutic cancer drugs that will have a powerful role in cancer therapy," said Shay, professor of cell biology. "They should prevent the recovery of residual cancer cells following conventional therapy and thus make them more susceptible to attack by the immune system or killing by existing therapeutic agents."

Telomerase activity is widely recognized as a marker of cancer cells, and its activity has been correlated with tumor aggressiveness in a number of studies. While most normal cells have finite life spans and do not contain telomerase, more than 90 percent of cancer cells, which divide indefinitely, contain telomerase.

Previous work (Science 279:349-52, 1998) by Shay; Dr. Woodring Wright, professor of cell biology; other UT Southwestern co-workers; and Geron Corp. colleagues proved that telomerase was sufficient to immortalize normal human cells grown in the laboratory and that progressive shortening of telomeres - specific short pieces of deoxyribonucleic acid (DNA) that telomerase adds back to the ends of chromosomes - is the biological clock that governs how many times a cell divides.

Because telomerase has an essential ribonucleic acid (RNA) component that acts as a template for adding back telomeres to the ends of chromosomes, Corey and colleagues designed short pieces of RNA and DNA to bind to the telomerase RNA template and block the enzyme's activity. These synthetic inhibitors belong to a family of molecules already being tested in clinical trials for other diseases.

"Using the synthetic inhibitors we designed, we are confident that the effects we observed are due to the inhibition of telomerase," said Corey, associate professor of pharmacology and biochemistry. "This opens the door to the next step - rational and well-controlled animal studies."

In theory telomerase inhibition should prevent the addition of new telomeres but not cause immediate cell death. With each successive cell division, the telomere length should decrease - as seen in normal human cells that have no telomerase - until due to shortened telomere length, the cells die. The time between addition of the inhibitor and cell death should depend on the initial telomere length- the shorter the telomere length, the sooner cell-growth inhibition is achieved.

"In the experiment, which was carried out for over 100 days, no cells survived the anti-telomerase treatment. In most current cancer therapies, there are often some tumor cells that survive the initial treatment, and this can often lead to cancer relapses," Shay said. "Since no cells survived in the study, this indicates that alternative mechanisms to maintain telomere length were not easily activated."

Other UT Southwestern investigators participating in the study were lead co- authors cell biology postdoctoral fellow Dr. Brittney-Shea Herbert and molecular biophysics graduate student Anne Pitts; research technician Scott Baker and research associate Susan Hamilton, both of the Howard Hughes Medical Institute; and Wright.

Grants from the Robert A. Welch Foundation, the National Institutes of Health, the National Cancer Institute, the Susan G. Komen Breast Cancer Foundation and Geron helped fund the study.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Scientists Cause Human Cancer Cell Death By Inhibiting Telomerase." ScienceDaily. ScienceDaily, 7 December 1999. <www.sciencedaily.com/releases/1999/12/991207075002.htm>.
University Of Texas Southwestern Medical Center At Dallas. (1999, December 7). Scientists Cause Human Cancer Cell Death By Inhibiting Telomerase. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1999/12/991207075002.htm
University Of Texas Southwestern Medical Center At Dallas. "Scientists Cause Human Cancer Cell Death By Inhibiting Telomerase." ScienceDaily. www.sciencedaily.com/releases/1999/12/991207075002.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins