Featured Research

from universities, journals, and other organizations

More Accurate Time: NIST's New Year Gift To The World

Date:
January 3, 2000
Source:
National Institute Of Standards And Technology
Summary:
There's nothing like the joy of receiving a precision timepiece as a holiday gift. Thanks to the Commerce Department's National Institute of Standards and Technology, the whole world can share that feeling because the agency today placed into operation a new atomic clock that will neither gain nor lose a second in nearly 20 million years.

There's nothing like the joy of receiving a precision timepiece as a holiday gift. Thanks to the Commerce Department's National Institute of Standards and Technology, the whole world can share that feeling because the agency today placed into operation a new atomic clock that will neither gain nor lose a second in nearly 20 million years.

Termed NIST F-1, the new cesium atomic clock at NIST's Boulder, Colo., laboratories, began its role as the nation's primary frequency standard by contributing to an international pool of the world's atomic clocks that is used to define Coordinated Universal Time (known as UTC), the official world time. Because NIST F-1 shares the distinction of being the most accurate clock in the world (with a similar device in Paris), it is making UTC more accurate than ever before. NIST F-1 recently passed the evaluation tests that demonstrated it is approximately three times more accurate than the atomic clock it replaces, NIST-7, also located at the Boulder facility. NIST-7 has been the primary atomic time standard for the United States since 1993 and is among the best time standards in the world.

NIST F-1 is referred to as a fountain clock because it uses a fountain-like movement of atoms to obtain its improved reckoning of time. First, a gas of cesium atoms is introduced into the clock's vacuum chamber. Six infrared laser beams then are directed at right angles to each other at the center of the chamber. The lasers gently push the cesium atoms together into a ball. In the process of creating this ball, the lasers slow down the movement of the atoms and cool them to near absolute zero.

Two vertical lasers are used to gently toss the ball upward (the "fountain" action), and then all of the lasers are turned off. This little push is just enough to loft the ball about a meter high through a microwave-filled cavity. Under the influence of gravity, the ball then falls back down through the cavity.

As the atoms interact with the microwave signal—depending on the frequency of that signal—their atomic states might or might not be altered. The entire round trip for the ball of atoms takes about a second. At the finish point, another laser is directed at the cesium atoms. Only those whose atomic states are altered by the microwave cavity are induced to emit light (known as fluorescence). The photons (tiny packets of light) emitted in fluorescence are measured by a detector.

This procedure is repeated many times while the microwave energy in the cavity is tuned to different frequencies. Eventually, a microwave frequency is achieved that alters the states of most of the cesium atoms and maximizes their fluorescence. This frequency is the natural resonance frequency for the cesium atom—the characteristic that defines the second and, in turn, makes ultraprecise timekeeping possible.

The NIST F-1 clock's method of resolving time differs greatly from that of its predecessor, NIST-7. That device—and the versions before it—fired heated cesium atoms horizontally through a microwave cavity at high speed. NIST F-1's cooler and slower atoms allow more time for the microwaves to "interrogate" the atoms and determine their characteristic frequency, thus providing a more sharply defined signal.

NIST F-1 was developed by Steve Jefferts and Dawn Meekhof of the Time and Frequency Division of NIST's Physics Laboratory in Boulder, Colo. It was constructed and tested in less than four years.

This new standard is more accurate by a wide margin than any other clock in the United States and assures the nation's industry, science and business sectors continued access to the extremely accurate timekeeping necessary for modern technology-based operations. Together with the U.S. Naval Observatory in Washington, D.C., NIST provides official time to the nation.

As a non-regulatory agency of the U.S. Department of Commerce's Technology Administration, NIST strengthens the U.S. economy and improves the quality of life by working with industry to develop and apply technology, measurements and standards through four partnerships: the Measurement and Standards Laboratories, the Advanced Technology Program, the Manufacturing Extension Partnership and the Baldrige National Quality Program.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "More Accurate Time: NIST's New Year Gift To The World." ScienceDaily. ScienceDaily, 3 January 2000. <www.sciencedaily.com/releases/2000/01/000103050120.htm>.
National Institute Of Standards And Technology. (2000, January 3). More Accurate Time: NIST's New Year Gift To The World. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2000/01/000103050120.htm
National Institute Of Standards And Technology. "More Accurate Time: NIST's New Year Gift To The World." ScienceDaily. www.sciencedaily.com/releases/2000/01/000103050120.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins