Featured Research

from universities, journals, and other organizations

Virginia Tech Researchers Advancing Fuel Cell Materials

Date:
March 27, 2000
Source:
Virginia Tech
Summary:
Fuel cells are well recognized as having real potential to supply clean energy for cars, homes, and portable electronics, such as computers One of the limiting features of fuel cells involve the characteristics and stability of polymeric materials used in the proton exchange membrane (PEM) that allows hydrogen protons (H+ ions) to pass through to the oxygen side of the fuel cell, where it can release electrochemical energy by reaction with the oxygen to produce water.

Blacksburg, Va. -- Fuel cells are well recognized as having real potential to supply clean energy for cars, homes, and portable electronics, such as computers One of the limiting features of fuel cells involve the characteristics and stability of polymeric materials used in the proton exchange membrane (PEM) that allows hydrogen protons (H+ ions) to pass through to the oxygen side of the fuel cell, where it can release electrochemical energy by reaction with the oxygen to produce water.

Existing materials have a reasonable life at 80 degrees C, but experts at the Department of Defense, the Department of Energy, and others have suggested that operation at 120 degrees C or higher would be more efficient.

Virginia Tech researchers will present three approaches for the generation of new PEM materials at the 219th American Chemical Society National Meeting March 26-30 in San Francisco.

The materials being developed by faculty members and students at Virginia Tech have demonstrated better results than existing materials in terms of heat tolerance. The researchers' common approach is to develop PEM wholly aromatic polymers that incorporate the ion conductor sulfonic acid groups at the monomer level rather than during a post reaction, after the polymer has been formed.

"Direct polymerization, or introduction of the ion conductor during a direct reaction from the monomers, instead of a post reaction after polymerization, allows us to develop a better understanding of what the molecular structure is," explains James McGrath, professor of chemistry and director of the Materials Institute at Virginia Tech. "The polymer materials appear to be more stable and better defined when the ion conductor is incorporated during the polymerization, as part of one of the monomers."

The research will be presented at 5:30 p.m. Sunday, March 26, in room 104 of the exhibit level of the Moscone Convention Center. Research on phenyl phosphine oxide -based PEM materials (POLY paper 121) is being presented by chemistry postdoctoral fellows H.K. Shobba and M Sankarapandian, former NSF summer undergraduate researcher Grace Smalley, and McGrath. Research on new polyimides as PEMs (POLY paper 122), which McGrath calls particularly promising, is being presented by chemistry graduate student Nazan Gunduz and McGrath. And research on polysulfones (POLY paper 151) is being presented by post doctoral associates Feng Wang and Qing Ji, Ph.D. students William Harrison and Jeff Mecham, and McGrath, all of Virginia Tech's chemistry department, and Rich Formato and Bob. Kovar of Foster-Miller of Waltham, Mass.

Fuel cell primer:

Oxygen reacts with hydrogen electrochemically to produce water and energy. In a fuel cell, hydrogen protons slip through a proton exchange membrane (PEM) to react with the oxygen in another chamber.

Efficiencies can be higher than an internal combustion engine and many times greater than from batteries. Fuel cells can be smaller, lighter, and less costly than batteries for powering vehicles, with little or no environmental impact.

Fuel cells can also be developed using diesel or regular gasoline, natural gas, or methanol as precursors for the proton exchange.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Virginia Tech Researchers Advancing Fuel Cell Materials." ScienceDaily. ScienceDaily, 27 March 2000. <www.sciencedaily.com/releases/2000/03/000327084245.htm>.
Virginia Tech. (2000, March 27). Virginia Tech Researchers Advancing Fuel Cell Materials. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2000/03/000327084245.htm
Virginia Tech. "Virginia Tech Researchers Advancing Fuel Cell Materials." ScienceDaily. www.sciencedaily.com/releases/2000/03/000327084245.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins