Featured Research

from universities, journals, and other organizations

Virginia Tech Researchers Advancing Fuel Cell Materials

Date:
March 27, 2000
Source:
Virginia Tech
Summary:
Fuel cells are well recognized as having real potential to supply clean energy for cars, homes, and portable electronics, such as computers One of the limiting features of fuel cells involve the characteristics and stability of polymeric materials used in the proton exchange membrane (PEM) that allows hydrogen protons (H+ ions) to pass through to the oxygen side of the fuel cell, where it can release electrochemical energy by reaction with the oxygen to produce water.

Blacksburg, Va. -- Fuel cells are well recognized as having real potential to supply clean energy for cars, homes, and portable electronics, such as computers One of the limiting features of fuel cells involve the characteristics and stability of polymeric materials used in the proton exchange membrane (PEM) that allows hydrogen protons (H+ ions) to pass through to the oxygen side of the fuel cell, where it can release electrochemical energy by reaction with the oxygen to produce water.

Related Articles


Existing materials have a reasonable life at 80 degrees C, but experts at the Department of Defense, the Department of Energy, and others have suggested that operation at 120 degrees C or higher would be more efficient.

Virginia Tech researchers will present three approaches for the generation of new PEM materials at the 219th American Chemical Society National Meeting March 26-30 in San Francisco.

The materials being developed by faculty members and students at Virginia Tech have demonstrated better results than existing materials in terms of heat tolerance. The researchers' common approach is to develop PEM wholly aromatic polymers that incorporate the ion conductor sulfonic acid groups at the monomer level rather than during a post reaction, after the polymer has been formed.

"Direct polymerization, or introduction of the ion conductor during a direct reaction from the monomers, instead of a post reaction after polymerization, allows us to develop a better understanding of what the molecular structure is," explains James McGrath, professor of chemistry and director of the Materials Institute at Virginia Tech. "The polymer materials appear to be more stable and better defined when the ion conductor is incorporated during the polymerization, as part of one of the monomers."

The research will be presented at 5:30 p.m. Sunday, March 26, in room 104 of the exhibit level of the Moscone Convention Center. Research on phenyl phosphine oxide -based PEM materials (POLY paper 121) is being presented by chemistry postdoctoral fellows H.K. Shobba and M Sankarapandian, former NSF summer undergraduate researcher Grace Smalley, and McGrath. Research on new polyimides as PEMs (POLY paper 122), which McGrath calls particularly promising, is being presented by chemistry graduate student Nazan Gunduz and McGrath. And research on polysulfones (POLY paper 151) is being presented by post doctoral associates Feng Wang and Qing Ji, Ph.D. students William Harrison and Jeff Mecham, and McGrath, all of Virginia Tech's chemistry department, and Rich Formato and Bob. Kovar of Foster-Miller of Waltham, Mass.

Fuel cell primer:

Oxygen reacts with hydrogen electrochemically to produce water and energy. In a fuel cell, hydrogen protons slip through a proton exchange membrane (PEM) to react with the oxygen in another chamber.

Efficiencies can be higher than an internal combustion engine and many times greater than from batteries. Fuel cells can be smaller, lighter, and less costly than batteries for powering vehicles, with little or no environmental impact.

Fuel cells can also be developed using diesel or regular gasoline, natural gas, or methanol as precursors for the proton exchange.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Virginia Tech Researchers Advancing Fuel Cell Materials." ScienceDaily. ScienceDaily, 27 March 2000. <www.sciencedaily.com/releases/2000/03/000327084245.htm>.
Virginia Tech. (2000, March 27). Virginia Tech Researchers Advancing Fuel Cell Materials. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2000/03/000327084245.htm
Virginia Tech. "Virginia Tech Researchers Advancing Fuel Cell Materials." ScienceDaily. www.sciencedaily.com/releases/2000/03/000327084245.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins