Featured Research

from universities, journals, and other organizations

Molecules With Attitude, Ready To Perform -- Functioning Nanostructures Self-Assemble Out Of Ink

Date:
May 5, 2000
Source:
Sandia National Laboratories
Summary:
Observed through a microscope, dried ink appears as a jumble of particles. Now an ink has been produced that, as it dries, can be seen under very powerful microscopes to self-assemble into orderly layers of very tiny caves -- actually, nanoscopic pores -- each leading to the next. The dried result, formed of usable nanostructures that perform work, could be considered intelligent ink.

ALBUQUERQUE, N.M. -- Observed through a microscope, dried ink appears as a jumble of particles. Now an ink has been produced that, as it dries, can be seen under very powerful microscopes to self-assemble into orderly layers of very tiny caves -- actually, nanoscopic pores -- each leading to the next. Within these caves, ligands -- active molecules that exhibit molecular recognition charactistics -- interrogate any gas or fluid, laser light, or electric or magnetic field passing through.

The new ink can be printed easily and cheaply from ordinary inkjet printers or even written by lithographic pens.

The dried result, formed of usable nanostructures that perform work, could be considered intelligent ink.

"Our achievement should be of practical importance for those of some technical ability wishing to directly write -- rather than mechanically construct -- sensor arrays and fluidic or photonic systems," says project leader Jeff Brinker, a senior scientist at the Department of Energy's Sandia National Laboratories and a professor at the University of New Mexico (UNM).

A report of the work, published in the May 4 issue of the journal Nature, describes how researchers were able to use these self-assembling inks to write patterns of varying lengths, on a variety of surfaces, that possess external form and internal function.

The process, which avoids the need for molds, masks, and resists common to most lithographic processes, produces ink that in seconds becomes a functioning, self-assembled, nanoscopic material. Its caves -- nanoscopic pores -- behave as little sensors or even valves, as though one had created machines so small that, next to any of them, a grain of pollen would be roughly the size of a skyscraper.

The research group's prototypes have already monitored the pH of fluids transported by capillary action, and formed structures that could act as wave-guides to direct laser light.

By linking computer-aided design (CAD) with an inkjet printer, it will be possible to create in seconds a functional nanostructure that was a drawing on a computer screen only moments before.

"We should be able to fabricate a substance that organizes itself to build a fluidic channel network instead of having to painstakingly design and cut one," says Brinker. "With positive ligands in the mix to act upon incoming chemicals, we would have the equivalent of an analytical machine that built itself instead of needing construction."

He also envisions making a valve simply by creating molecular pores that change shape due to external input. "We could write structures that position pore pathways in a second, sensors included."

"People have used ink jet printers to print ceramic material into a substrate," says Brinker. "Here, inside each ink dot, the ink self-organizes into further function: pore networks, surface(s) decorated by organic functional ligands and mesoscopic pore channels. It's a self-creating functional factory."

In effect, says Brinker, "we can combine thousands of different types of ink for different functionality. The process would work just the way color printers currently mix hundreds of different colored inks to get a blended result. With color-pattern software, we could make functioning materials with a variety of characteristics: say, strong, hard, and hydrophobic, with a low dielectric constant."

Ligands sprinkled into the ink could be used to sense light or heat, measure magnetic and electric fields, or filter gases and liquids.

The work is an extension of previous achievements by the research group, also reported in Nature. These involved using simpler forms of the same technique to produce self-organized materials on the nanoscale. They were used to form sensitive coatings, layers that produced the structure and strength of seashells, and nanospheres structured to selectively adsorb environmental molecules or dispense chemicals.

The process, called evaporation-induced self-assembly, is based on the scientifically well-known tendency of two-sided detergent molecules composed of water-loving (hydrophilic) and water-hating (hydrophobic) portions to spontaneously form spherical molecular assemblies. By including organic and inorganic materials, detergent self-assembly can be harnessed to create organic and inorganic nanostructures. Continued mild heating polymerizes these nanostructures and bonds their interfaces. The Sandia/UNM process is promising because it does away with the tedious, sequential deposition of individual organic and inorganic layers, a much longer process when it is even possible.

Other members of the team are Hongyou Fan, Aaron Stump, Victor Perez-Luna, and Gabriel Lopez from UNM's Center for Micro-Engineered Materials and Department of Chemical and Nuclear Engineering. Participating Sandia researchers included Yunfeng Lu (former UNM student and Sandia post-doc, now at Applied Materials Inc. in Santa Clara, Calif.), Scott Reed, Tom Baer, and Randy Schunk.

The work continues to interest major research societies. Hongyou Fan won a Materials Research Society Graduate Student Award silver medal for this work, and for his work on self-assembly. Yunfeng Lu won the American Chemical Society's 31st annual Victor K. LaMer Graduate Award in Colloid and Surface Chemistry. Both are students of Brinker's. Previous winners of the prestigious LaMer award, from 1990 to 1999, respectively, were students from Princeton, Purdue, Massachusetts Institute of Technology, Stanford, Harvard, University of California Berkeley, Cornell, University of Pennsylvania, Carnegie Mellon, and Harvard.

Funding for this project was provided by Sandia's Laboratory Directed Research and Development office, DOE, and the Department of Defense's Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Molecules With Attitude, Ready To Perform -- Functioning Nanostructures Self-Assemble Out Of Ink." ScienceDaily. ScienceDaily, 5 May 2000. <www.sciencedaily.com/releases/2000/05/000505064926.htm>.
Sandia National Laboratories. (2000, May 5). Molecules With Attitude, Ready To Perform -- Functioning Nanostructures Self-Assemble Out Of Ink. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2000/05/000505064926.htm
Sandia National Laboratories. "Molecules With Attitude, Ready To Perform -- Functioning Nanostructures Self-Assemble Out Of Ink." ScienceDaily. www.sciencedaily.com/releases/2000/05/000505064926.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins