Featured Research

from universities, journals, and other organizations

Laser-Assisted Machining Will Make Ceramic Parts Less Costly

Date:
May 17, 2000
Source:
Purdue University
Summary:
An innovative technique for machining brittle ceramic materials by first softening them with heat from a laser may cut in half the cost of making components for a growing U.S. market now approaching $10 billion.

WEST LAFAYETTE, Ind. – An innovative technique for machining brittle ceramic materials by first softening them with heat from a laser may cut in half the cost of making components for a growing U.S. market now approaching $10 billion.

Related Articles


The technique could be especially critical for certain kinds of ceramic components that are not produced in large enough quantities to justify the expense of designing costly molds called dies. Components made in small lot sizes might be produced far more economically by machining instead of being formed with dies. But there has been no practical way to machine the brittle ceramic materials economically with the high precision needed for many components.

Download Photo HerePhoto caption below

The new technique, which could be in commercial use within a year, was developed by Yung C. Shin, a professor of mechanical engineering at Purdue University.

"I think we are past the experimental stage," Shin says. "We are hoping to reduce current manufacturing costs at least by 50 percent."

A paper about the work will appear in the April issue of the industry trade publication, Abrasives Magazine.

As the ceramic part is being machined, the laser heats the material to more than 1,000 degrees centigrade, or about 1,800 Fahrenheit, making it softer and more ductile. But the position and strength of the laser must be controlled precisely so that it heats only a tiny portion of material just before it is machined. The soft, red-hot ceramic is then removed with a cutting tool made out of an ultra-hard, diamond-like material called cubic boronitride, Shin says.

"We heat a very small, shallow layer of the surface, and then we remove it immediately so that the interior is not damaged by heat," Shin says.

Advanced ceramics are used in a wide range of applications, from engine parts to electronics, chemical processing to artificial human joints; the materials are exceptionally hard, can withstand high temperatures and do not wear out as quickly as metals.

The estimated world market for advanced ceramics this year is $25 billion, which represents a growth of almost 50 percent from the 1994 market of $16.7 billion, according to The Freedonia Group Inc., a forecasting company based in Cleveland. In the United States alone, the market for ceramic components is expected to be $10.9 billion by 2003, compared with about $7.4 billion in 1998, according to The Business Communications Co. in Norwalk, Conn.

Growth in some applications for advanced ceramics has been tempered by a major obstacle; the high cost of machining ceramic parts. With conventional methods, using diamond tools to grind ceramics is extremely expensive, sometimes amounting to more than 75 percent of the total cost of making a part.

"Right now that's the biggest problem." Shin says. "One of the advantages of this technique is that you might be able to produce complex geometry in one single cut. Currently, when people do diamond grinding, they have to go through multiple stations to get the geometry they need.

"Each diamond-grinding machine costs about $1 million. It's not unusual to need seven or eight of those machines to make one part. If we can machine this part using a single laser-assisted machining system that will cost less than half a million dollars, then that's a significant saving."

Ongoing research by Shin's team will include efforts to understand the details of how ceramics deform while being subjected to high heat, an important factor in future advances.

"We are trying to understand what we call the thermo-mechanical behavior of ceramics, and it's a very challenging issue," Shin says.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Laser-Assisted Machining Will Make Ceramic Parts Less Costly." ScienceDaily. ScienceDaily, 17 May 2000. <www.sciencedaily.com/releases/2000/05/000515090528.htm>.
Purdue University. (2000, May 17). Laser-Assisted Machining Will Make Ceramic Parts Less Costly. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2000/05/000515090528.htm
Purdue University. "Laser-Assisted Machining Will Make Ceramic Parts Less Costly." ScienceDaily. www.sciencedaily.com/releases/2000/05/000515090528.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins