Featured Research

from universities, journals, and other organizations

Research To Give Authorities New Tool In Tracking Terrorists

Date:
June 30, 2000
Source:
University Of Florida
Summary:
A new technique developed by University of Florida and University of Central Florida researchers may make it harder for terrorist bombers to cover their tracks.

Writer: Aaron Hoover

Sources: Joseph McClellan -- (814) 838-7082, mclell@chem.ufl.edu; Jehuda Yinon -- (407) 823-6469, jyinon@mail.ucf.edu

GAINESVILLE, Fla. --- A new technique developed by University of Florida and University of Central Florida researchers may make it harder for terrorist bombers to cover their tracks.

The technique detects explosive residues at concentrations 10 times lower than is possible with other techniques. The new method should make it far easier for authorities to determine if suspicious explosions are the result of bombs or other causes, the researchers say. The technique also may soon help authorities pin down where the explosives in bombs originated -- and even what company manufactured them, the researchers say.

"This method really looks like it will be more reliable and more sensitive than existing methods," said Richard Yost, a UF professor of chemistry.

One of the first tasks for authorities investigating suspicious explosions is to find and identify the explosive. That's not as easy as it may appear, said Jehuda Yinon, a professor of forensic science at the National Center for Forensic Science at UCF. For starters, the vast majority of explosive material may be consumed in the blast. What little unexploded material remains could be scattered widely and embedded in structures or debris, he said. The size of the bomb matters little in what remains. For instance, the bomb used in the Oklahoma City bombing weighed 2 tons, but investigators could not identify any explosive residue following the blast, he said.

Using current techniques, authorities can detect and identify explosive residues at concentrations as low as 10 parts per billion, said Joseph McClellan, a UF doctoral student scheduled to graduate in August who developed the new technique with Yost and Yinon.

In preliminary tests, the UF-UCF technique has proved capable of detecting explosives at levels of 1 part per billion or better, McClellan said. The technique also is faster than existing methods because it does not require extensive preparation of the sample.

Investigators typically search for explosive residues by analyzing samples of debris or structures near an explosion. A number of different methods are used. The government-approved method uses liquid chomatography coupled with ultraviolet light detection, with the liquid chromatography separating the explosive from the other compounds and the UV detection identifying the explosive. The new technique improves on this method using atmospheric pressure ionization -- mass spectometry to detect and identify the explosives. When coupled with liquid chromatography, the result is a highly sensitive and selective analytical technique, McClellan and Yinon said.

"I wouldn't use the word ‘breakthrough,' but it certainly is a further step ahead," Yinon said. "I believe that as we put the final touches on this technique, it's going to be adopted by the major police forensics laboratories."

Although the researchers have yet to apply their technique to material from an actual bombing, it has proved successful in detecting trace levels of explosives commonly used by the military and terrorists, including TNT, the world's most widely used explosive, as well as more exotic explosives such as PETN, McClellan said.

The technique also can be used to identify manufacturing byproducts, impurities and dyes in explosives that may point to the country or manufacturing plant where they originated, Yinon said. To test the potential for using this capability to trace explosives, the researchers are assembling and analyzing samples of TNT from a wide variety of origins. The idea is to create a database for authorities to refer to when investigating suspicious TNT explosions, Yinon said. If successful, similar databases could be created for other explosives, he said.

"After we have a database, whenever there is a case of a bombing, the local forensics people can do an analysis and match their results with the database and say, ‘Hey, this was made in Russia' or 'This was made in the U.S.A.,'" Yinon said.

The research was funded in part by a grant from NATO and in part by UF, McClellan said.


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "Research To Give Authorities New Tool In Tracking Terrorists." ScienceDaily. ScienceDaily, 30 June 2000. <www.sciencedaily.com/releases/2000/06/000628152714.htm>.
University Of Florida. (2000, June 30). Research To Give Authorities New Tool In Tracking Terrorists. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2000/06/000628152714.htm
University Of Florida. "Research To Give Authorities New Tool In Tracking Terrorists." ScienceDaily. www.sciencedaily.com/releases/2000/06/000628152714.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins