Featured Research

from universities, journals, and other organizations

Preparations Under Way For Final Phase Of Testing To Qualify Unique Engine For X-33 Rocket Plane

Date:
September 29, 2000
Source:
NASA's Marshall Space Flight Center
Summary:
Linear aerospike engines for NASA's prototype X-33 rocket plane are being readied for dual firing tests.

Preparations are under way at NASA’s John C. Stennis Space Center near Bay St. Louis, Miss., for the final phase of testing to qualify the innovative Linear Aerospike engine that will power the experimental X-33 rocket plane being developed by a Lockheed Martin-led industry team and NASA.

Having recently completed a successful series of single-engine tests, the engine has been removed from the Stennis test stand by a team from NASA and the Rocketdyne Propulsion & Power unit of The Boeing Company. The stand is now being modified to accommodate two engines for simultaneous firings in their flight configuration. This phase of the program is scheduled to begin late this year.

Following successful completion of dual-engine testing, these engines will be shipped to Palmdale, Calif., where they will be installed in the X-33 vehicle.

During the first phase of testing, the engine accumulated more than 1,500 seconds of operation – the equivalent of approximately seven X-33 flights.

“We are amazed and delighted at how smoothly the test program has gone so far,” said Mike McKeon, program manager for the XRS-2200 Linear Aerospike Engine at Boeing Rocketdyne. “We conducted 14 tests and accumulated a wealth of vital data without breaking any hardware. For an engine development program of this magnitude and complexity, that is simply amazing.”

“Few new, much less innovative, engines even get to full power in so few tests,” added NASA’s Dr. Donald Chenevert, X-33 Project Manager at Stennis Space Center. “We met or exceeded a number of significant objectives during the first phase of the program, " said Chenevert.

These milestones include: starting the engine under various conditions, operating at and throttling between various power levels, operating at various fuel and oxidizer mixtures, and varying the thrust across the engine.

For the next phase of testing, two engines will be mated together and operated in X-33 flight configuration. Approximately nine dual-engine tests are planned. This phase of testing will verify the seal between the two engines; dual-engine start, stop and operational parameters; and the ability for the engines to control the X-33’s direction of flight by varying the thrust from side to side and engine to engine. The testing will also verify the ability of one engine’s turbo-machinery to power both engines should a set of turbo-machinery fail during flight.

“We are proud of the NASA/industry team that has so effectively brought this unique new engine to this significant milestone,” said Gene Austin, NASA’s X-33 Program manager with the Marshall Space Flight Center. “The hardware worked well in this first test series, and we are eager to see how well it performs in the dual engine testing. This engine has the potential to revolutionize our nation’s space launch capabilities. It is just one of many cutting edge technologies the X-33 program is demonstrating.”

The XRS-2000 engine was developed by Boeing Rocketdyne at its Canoga Park, Calif. Final engine assembly was done by the NASA/Boeing Rocketdyne team at Stennis Space Center.

Two aerospike engines will power the X-33, a half-scale, suborbital technology demonstrator of Lockheed Martin’s proposed commercial reusable launch vehicle called VentureStarTM. The X-33 is being developed as a joint government/industry partnership under a cooperative agreement between NASA and Lockheed Martin Aeronautics Company in Palmdale, Calif. Marshall Space Flight Center in Huntsville, Ala., manages the X-33 program for NASA.


Story Source:

The above story is based on materials provided by NASA's Marshall Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA's Marshall Space Flight Center. "Preparations Under Way For Final Phase Of Testing To Qualify Unique Engine For X-33 Rocket Plane." ScienceDaily. ScienceDaily, 29 September 2000. <www.sciencedaily.com/releases/2000/09/000913193515.htm>.
NASA's Marshall Space Flight Center. (2000, September 29). Preparations Under Way For Final Phase Of Testing To Qualify Unique Engine For X-33 Rocket Plane. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2000/09/000913193515.htm
NASA's Marshall Space Flight Center. "Preparations Under Way For Final Phase Of Testing To Qualify Unique Engine For X-33 Rocket Plane." ScienceDaily. www.sciencedaily.com/releases/2000/09/000913193515.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins