Featured Research

from universities, journals, and other organizations

Like A Dimmer Switch, Turning A Nanotube Can Control Electrical Flow

Date:
December 12, 2000
Source:
North Carolina State University
Summary:
Scientists at the University of North Carolina at Chapel Hill and North Carolina State University have found that by rotating a carbon nanotube, they can control its ability to conduct electrical current to another material, just as you can control the flow of electricity to lights by turning a dimmer switch.

Scientists at the University of North Carolina at Chapel Hill and North Carolina State University have found that by rotating a carbon nanotube, they can control its ability to conduct electrical current to another material, just as you can control the flow of electricity to lights by turning a dimmer switch.The discovery marks the first time scientists have been able to show that by rotating a nanostructure they can control its electrical resistance.

That knowledge could be especially useful to researchers working in fields like wireless communications or micro-robotics by making it easier for them to design electronic devices and actuating systems -- on/off power switches and the like -- at the nanoscale level.

The UNC and NC State scientists published their finding in a peer-reviewed paper in the Dec. 1 issue of Science.

First discovered in 1991, carbon nanotubes are structures so small that thousands could fit on the tip of a pen. Their molecular size and mechanical and electronic properties make them prime candidates for use as components in nanometer-sized electronic and actuating devices that many scientists feel are the wave of the future.

"We found that we can change the electrical resistance between the carbon nanotube and a graphite substrate up to a factor of 50 by simply rotating the nanotube," said Dr. Marco Buongiorno Nardelli, a research associate in physics at NC State. Being able to do this, he says, gives nanoscale-device designers a controllable, continuous means of converting mechanical signals into electrical signals -- something they have long sought.

"Being able to adjust the electrical resistance in this way could, one day, lead to much faster, more energy - efficient electronic devices," he said.

In addition to Buongiorno Nardelli, the seven-person research team includes Drs. S. Paulson, A. Helser, R.M. Taylor II, M. Falvo, R. Superfine and S. Washburn, all of UNC-Chapel Hill. (Paulson is now at Duke University.) The experiments were carried out at Chapel Hill.

Buongiorno Nardelli, a native of Rome, Italy, served as team’s sole theoretical physicist.

He says even without its long-term practical applications, the team's discovery is significant, because it represents another building block in modern science's understanding of nanotechnology fundamentals. The transfer of electrons from one material to another has almost always been thought of in terms of energy conservation, with no attention being paid to momentum conservation, he says. "These experiments show us that momentum conservation plays a role, too."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Like A Dimmer Switch, Turning A Nanotube Can Control Electrical Flow." ScienceDaily. ScienceDaily, 12 December 2000. <www.sciencedaily.com/releases/2000/12/001204071425.htm>.
North Carolina State University. (2000, December 12). Like A Dimmer Switch, Turning A Nanotube Can Control Electrical Flow. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2000/12/001204071425.htm
North Carolina State University. "Like A Dimmer Switch, Turning A Nanotube Can Control Electrical Flow." ScienceDaily. www.sciencedaily.com/releases/2000/12/001204071425.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins