Featured Research

from universities, journals, and other organizations

Geologist Suggests Water May Reside As Ice Deep In Planets' Interior

Date:
December 22, 2000
Source:
Northwestern University
Summary:
In a paper to be published Dec. 14 in the journal Nature, Northwestern University geologist Craig R. Bina reports that, in a novel twist on current thinking, water may be transported into the interior of planets as a high-pressure form of ice, rather than simply being transported while trapped within hydrous minerals or escaping as a fluid.

In a paper to be published Dec. 14 in the journal Nature, Northwestern University geologist Craig R. Bina reports that, in a novel twist on current thinking, water may be transported into the interior of planets as a high-pressure form of ice, rather than simply being transported while trapped within hydrous minerals or escaping as a fluid.

Bina and co-author Alexandra Navrotsky, a chemist and materials scientist from the University of California, Davis, suggest that this process should become more important as planets cool, for example on a future Earth or on Mars.

Large amounts of a form of water ice, called "ice VII," may be accumulating deep in the Earth’s interior during the process of subduction, where the oceanic crust is stuffed periodically below the surface crust. (Subduction is one of the main types of action in plate tectonics.) The most likely place to look for evidence of such a process, say the researchers, would be in Tonga, a group of islands in the southwest Pacific Ocean and one of Earth’s coldest subduction zones.

The researchers’ calculations indicate that in these subduction zones conditions do exist that could result in the formation of ice VII, a form of ice in which the atoms are packed closely together. The high pressures and low temperatures beneath the surface in an area like Tonga could result in water being carried deep below the Earth’s crust as ice — which is not very mobile — before temperatures are great enough to melt the ice and enable it to be released as water.

"To my knowledge, we are the first to look at the possibility of the water being released from the subsumed rock as ice, not as a fluid," said Bina. "Tonga would be the most obvious place to look for geophysical evidence of ice VII."

The decreasing availability of fluid water, caused by the accumulation of ice VII and its subsequent reaction products in a cooling planetary interior, as in the future Earth or Mars, might eventually lead to a decline in tectonic activity or its complete cessation.

"Recent discovery of what look like gullies on Mars suggest that the planet is not completely dry," said Bina. "Water for forming gullies could be stored at shallow levels beneath the Martian surface, perhaps as normal ice. Our work suggests that there could also be water stored in the deep interior as high-pressure ice, which could be released to drive volcanic activity."

Bina and Navrotsky suggest that the state — fluid versus crystalline — of water inside planets can profoundly affect both dynamics and thermal balance, and that a change in the relative proportions of fluid and solid water "is one of the important factors influencing the different possible paths of planetary evolution."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Geologist Suggests Water May Reside As Ice Deep In Planets' Interior." ScienceDaily. ScienceDaily, 22 December 2000. <www.sciencedaily.com/releases/2000/12/001214083319.htm>.
Northwestern University. (2000, December 22). Geologist Suggests Water May Reside As Ice Deep In Planets' Interior. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2000/12/001214083319.htm
Northwestern University. "Geologist Suggests Water May Reside As Ice Deep In Planets' Interior." ScienceDaily. www.sciencedaily.com/releases/2000/12/001214083319.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins