Featured Research

from universities, journals, and other organizations

Researchers Identify Promising Target To Slow Alzheimer's

Date:
December 19, 2000
Source:
American Chemical Society
Summary:
Researchers believe that a chemical called methionine plays a role in Alzheimer's disease and also could explain how vitamin E slows the progress of the disease in its later stages. The finding could lead to new drugs to delay the advance of Alzheimer's, say the researchers.

HONOLULU, Dec. 18 - Researchers believe that a chemical called methionine plays a role in Alzheimer's disease and also could explain how vitamin E slows the progress of the disease in its later stages. The finding could lead to new drugs to delay the advance of Alzheimer's, say the researchers, who presented their study today during the 2000 International Chemical Congress of Pacific Basin Societies.

The weeklong scientific meeting, held once every five years, is hosted by the American Chemical Society, in conjunction with its counterparts in Australia, Canada, Japan and New Zealand.

Alzheimer's is a chronic form of dementia that primarily strikes the elderly and causes severe memory loss and, eventually, death. The disease is characterized by the overproduction of a protein, beta-amyloid, that accumulates in the brain of its victims. Although normal brains contain beta-amyloid, those with the disease have comparatively large amounts. The protein is thought to produce chemicals called free radicals, which are toxic to the brain, according to the study's lead researcher, Allan Butterfield, Ph.D., a professor of chemistry and director of the Center for Membrane Sciences at the University of Kentucky in Lexington.

Butterfield examined the sequence of amino acids in beta-amyloid and found that one in particular - methionine - is the likely source of the toxic free radicals. He then modified methionine by substituting a sulfur atom with a carbon atom. In laboratory tests using rat brain cells, the modified version did not produce free radicals or kill brain cells, according to the researcher.

To determine whether the laboratory results could translate to living organisms, Butterfield joined forces with Christopher D. Link, Ph.D., a researcher at the University of Colorado's Institute for Behavioral Genetics in Boulder, Colo. The researchers obtained genetically modified worms that were able to produce either normal human beta-amyloid or methionine-substituted amyloid. The worms making normal beta-amyloid produced free radicals, which caused damage to the worm muscle proteins. The worms making methionine-substituted amyloid did not produce free radicals; hence, there was no damage to the muscle proteins.

Recent studies have demonstrated that higher than normal doses of vitamin E may slow the advance of Alzheimer's in some people with late stages of the disease. The current study provides a possible explanation for this link. Vitamin E, an antioxidant, appears to work by destroying free radicals (oxidants) produced by amyloid, says Butterfield.

"Our research provides an important insight into this mechanism and offers an appropriate rationale for antioxidant intervention in Alzheimer's," says Butterfield.

The finding provides yet another clue in unraveling the complex mystery of Alzheimer's. A growing number of factors have been associated with the disease, including stress, prior head injury, viruses, genes and abnormal concentrations of metal ions in the brain, including aluminum, zinc, copper, iron, mercury and lead.

In addition to drugs, vaccines and gene therapy are promising targets for treating the disease, which affects an estimated 4 million people in the United States. Unless better treatments are found, that figure is predicted to rise to 14 million later this century, says Butterfield, who calls Alzheimer's a potential public health crisis.

More than 8,000 research papers will be presented during this year's International Chemical Congress, which is sponsored jointly by the American Chemical Society, the Chemical Society of Japan, the Canadian Society of Chemistry, the Royal Australian Chemical Institute and the New Zealand Institute of Chemistry.

Allan Butterfield is a professor in the department of chemistry at the University of Kentucky in Lexington, Ky.

Christopher D. Link is a research scientist in the Institute for Behavioral Genetics at the University of Colorado in Boulder, Colo.

The National Institute on Aging and the state of Kentucky supported the study.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Researchers Identify Promising Target To Slow Alzheimer's." ScienceDaily. ScienceDaily, 19 December 2000. <www.sciencedaily.com/releases/2000/12/001219074712.htm>.
American Chemical Society. (2000, December 19). Researchers Identify Promising Target To Slow Alzheimer's. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2000/12/001219074712.htm
American Chemical Society. "Researchers Identify Promising Target To Slow Alzheimer's." ScienceDaily. www.sciencedaily.com/releases/2000/12/001219074712.htm (accessed August 1, 2014).

Share This




More Mind & Brain News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins