Featured Research

from universities, journals, and other organizations

Los Alamos Scientists Shed New Light On Quantum Computation

Date:
January 5, 2001
Source:
Los Alamos National Lab
Summary:
Scientists at the Department of Energy's Los Alamos National Laboratory and the University of Queensland's Centre for Quantum Computer Technology in Australia have made an advance in the quest for a functional quantum computer by exploiting currently existing technology in a novel and unexpected way. A functional quantum computer could solve certain large mathematical problems and crack secret codes at speeds faster than today's fastest supercomputers.

LOS ALAMOS, N.M., Jan. 4, 2001 -- Scientists at the Department of Energy's Los Alamos National Laboratory and the University of Queensland's Centre for Quantum Computer Technology in Australia have made an advance in the quest for a functional quantum computer by exploiting currently existing technology in a novel and unexpected way.

A functional quantum computer could solve certain large mathematical problems and crack secret codes at speeds faster than today's fastest supercomputers. If quantum computers can be built, they can factor large numbers, making them extremely useful for decoding information encrypted by means of currently standard methods.

Los Alamos researchers propose to use quanta of light or photons, the smallest unit of electromagnetic energy, as the basic elements for quantum information processing. Previous proposals based on photons required a crucial ingredient: non-linear optical elements that allow photons to interact with each other. While such elements have been used for proof-of-principle demonstrations, they suffer from a fatal flaw: they are much too weak to be combined usefully for quantum computation.

Up to now researchers believed that the only feasible option for a photon-based quantum computer was to make the non-linear elements stronger by several orders of magnitude, which seemed a difficult task. Now Emanuel Knill and Raymond Laflamme of Los Alamos and Gerard Milburn of the University of Queensland have proposed a different approach.

Presented in the Jan. 4 issue of Nature magazine, their idea is to use the high sensitivity of single photon detection and exploit the detection results to simulate the effects of non-linear elements. Although this process results in apparently irreversible loss of the "quantumness" of the system, the researchers have demonstrated that this loss can be prevented by using quantum error correction.

The proposed device has several advantages over its rivals. One advantage is that it can work at room temperature, which potentially makes these devices as accessible as personal computers. Also, it is based on existing technology: beam splitters, phase shifters, single photon sources and detectors. These, however, need to operate at higher precision than currently available.

"It was widely believed that optics without non-linear elements is no more powerful than currently available, classical computers," said Knill. "Although the measurements in our scheme irreversibly alter the system, one can still usefully quantum compute. The unwanted effect of measurements can be considered as an error on the system, and as long as both the location and the type of error are known, the system is surprisingly resilient. This discovery is surprising and unexpected, and we think that it provides a useful blueprint for quantum computers. The challenge will be to put our idea into practice."

Los Alamos National Laboratory has been a leader in theoretical and experimental quantum computation since quantum computers were first proposed in the 1990s as a way to factor large numbers. A three-qubit quantum computer was demonstrated by Knill, Laflamme and their collaborators at Los Alamos in 1998 using nuclear magnetic resonance with trichloroethylene molecules; they built the first seven qubit device in 2000.

Los Alamos National Laboratory is operated by the University of California for the Department of Energy.


Story Source:

The above story is based on materials provided by Los Alamos National Lab. Note: Materials may be edited for content and length.


Cite This Page:

Los Alamos National Lab. "Los Alamos Scientists Shed New Light On Quantum Computation." ScienceDaily. ScienceDaily, 5 January 2001. <www.sciencedaily.com/releases/2001/01/010105075630.htm>.
Los Alamos National Lab. (2001, January 5). Los Alamos Scientists Shed New Light On Quantum Computation. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2001/01/010105075630.htm
Los Alamos National Lab. "Los Alamos Scientists Shed New Light On Quantum Computation." ScienceDaily. www.sciencedaily.com/releases/2001/01/010105075630.htm (accessed September 23, 2014).

Share This



More Computers & Math News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Cat Lovers Flock to Los Angeles

Cat Lovers Flock to Los Angeles

AFP (Sep. 22, 2014) The best funny internet cat videos are honoured at LA's Feline Film Festival. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins