Featured Research

from universities, journals, and other organizations

First Results From Brookhaven Lab's New Relativistic Heavy Ion Collider

Date:
January 16, 2001
Source:
Brookhaven National Laboratory
Summary:
At the Quark Matter 2001 Conference at Stony Brook University, nearly 700 physicists from around the world gathered to hear breaking news about the exploration of a new frontier recently opened at the U.S. Department of Energy's Brookhaven National Laboratory. Among the findings: Collisions between gold ions in the Lab's newly operational Relativistic Heavy Ion Collider (RHIC) have created nuclear matter resulting from the highest energy density ever achieved in a scientific experiment.

STONY BROOK, NY (Jan. 15, 2000) - Today, at the Quark Matter 2001 Conference at Stony Brook University, nearly 700 physicists from around the world gathered to hear breaking news about the exploration of a new frontier recently opened at the U.S. Department of Energy's Brookhaven National Laboratory. Among the findings: Collisions between gold ions in the Lab's newly operational Relativistic Heavy Ion Collider (RHIC) have created nuclear matter resulting from the highest energy density ever achieved in a scientific experiment.

Much like the explorers of centuries past, keenly searching for signs of a new land on an unfamiliar horizon, the experimenters at RHIC are straining to see evidence of both expected scientific landmarks and new phenomena, predicted but not yet observed. "The clear observation of so many species of well-known particles, ranging from common to quite rare ones, indicates that the RHIC detectors are working spectacularly and that the real exploration can begin," says William Zajc, scientific spokesperson for RHIC's PHENIX detector, and one of the nearly 1,000 physicists working on RHIC.

In particular, the scientists are searching for evidence of a transition to a new phase of nuclear matter called the quark-gluon plasma (QGP), which scientists think last existed at the beginning of the universe and evolved into the matter of today's world. That transition is roughly analogous to boiling water to create steam. One of the things the scientists hope to find is the "boiling point," the energy density at which the transition takes place.

To do this, the RHIC scientists have built a machine capable of accelerating and colliding gold ions (atoms stripped of their electrons) at nearly the speed of light. So far, RHIC has produced more than 200 million gold ion collisions.

RHIC's four experimental teams - one for each of the collider's detectors - have just begun to focus their "microscopes" on these first collisions. "Already, the collision environment appears favorable for producing matter at high temperatures and densities, which bodes well for the future," says John Harris, spokesperson for the STAR detector collaboration.

Among the findings so far:

* The energy density - a measure of the energy deposited in the collision region by the colliding ions - is the highest ever achieved in a laboratory, at least 70 percent higher than in similar experiments at the European laboratory for particle physics, CERN.

* The pressure created in the first moments of the collisions causes the subatomic debris in the aftermath to flow in an elliptical pattern much more strongly than has been seen before.

* The number of subatomic particles created by each colliding proton and neutron inside the gold ions is much higher than in similar collisions of two protons at the same energy.

The relative abundance of antimatter to matter - in particular, antimatter containing one or more strange antiquarks - is increased significantly compared to similar experiments at CERN. This indicates that conditions have been produced that are closer to those believed to have existed at the beginning of the universe.

How much these early results will contribute to scientists' understanding of a possible transition to quark-gluon plasma is not yet clear. Some of the results are consistent with expectations based on previous work. Other results, however, are strikingly different from what was seen in previous experiments.

"The results from RHIC are challenging us to come to a new understanding of the unique environment that we are creating," says Gunther Roland, who presented the PHOBOS detector data. Only by looking at all the data from RHIC's four experiments will the scientists be able to piece together the complete picture.

"These are still the early days," says Flemming Videbaek, spokesperson for the BRAHMS detector team. "The first year's data are presenting us with a partial map of the heavy-ion collisions. It's as if we are coming to a new land and beginning to see mountains, rivers, and other geographic features." The next step is to understand how these features are related to each other and exactly what they reveal about this new frontier.

The scientists will get that chance as RHIC resumes operations this spring at even higher energy. During last year's experimental run, RHIC was operated at up to two-thirds of its design energy. Data at different collision energies will give a more complete picture of what happens to matter as it is heated and compressed, and will help the RHIC scientists understand and study the transition to quark-gluon plasma.

"We are delighted that RHIC is producing such interesting and important physics results so soon after turning on," said Peter Rosen, director of the Department of Energy's Office of High Energy and Nuclear Physics. "Brookhaven National Laboratory is to be congratulated for an outstanding job of building and operating RHIC, a unique world-class scientific facility. We at DOE look forward to future results with great anticipation and excitement."

The U.S. Department of Energy's Brookhaven National Laboratory creates and operates major facilities available to university, industrial and government personnel for basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is operated by Brookhaven Science Associates, a not-for-profit research management company, under contract with the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "First Results From Brookhaven Lab's New Relativistic Heavy Ion Collider." ScienceDaily. ScienceDaily, 16 January 2001. <www.sciencedaily.com/releases/2001/01/010116075337.htm>.
Brookhaven National Laboratory. (2001, January 16). First Results From Brookhaven Lab's New Relativistic Heavy Ion Collider. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2001/01/010116075337.htm
Brookhaven National Laboratory. "First Results From Brookhaven Lab's New Relativistic Heavy Ion Collider." ScienceDaily. www.sciencedaily.com/releases/2001/01/010116075337.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins