Featured Research

from universities, journals, and other organizations

Disconnect Between Skin Cells Implicated In Common Skin Cancer

Date:
February 23, 2001
Source:
University Of Chicago Medical Center
Summary:
A mutation that prevents skin cells from making normal connections with each other plays an unexpectedly early and important role in the development of the skin cancer, suggests a study published in the February 23, 2001 issue of Cell.

A mutation that prevents skin cells from making normal connections with each other plays an unexpectedly early and important role in the development of the skin cancer, suggests a study published in the February 23, 2001 issue of Cell.

Related Articles


By altering one molecule in a skin cell-cell junction in mice researchers at the University of Chicago profoundly changed the skin and caused it to behave like a pre-cancerous condition called squamous cell carcinoma in situ. Squamous cell carcinoma is one of the two most common forms of skin cancer with more than one million cases reported in the United States each year.

"Although mutations of this molecule have been found in some types of cancer, it has generally been assumed that this was a late event following other mutations disrupting cell-cycle control," said Elaine Fuchs, Ph.D., Amgen Professor of Molecular Genetics and Cell Biology and a Howard Hughes Investigator at the University of Chicago, and lead investigator of the study.

"We discovered surprisingly, this component's loss appears to be a critical early event in the development of skin cancer," said Fuchs. "This molecule appears to be doing more than simply participating in cell-cell junctions."

The organization the skin's epidermal layer depends on cell-cell connections formed by two types of intercellular structures: adherens junctions and desmosomes. The molecule alpha-catenin plays a role in adherens junctions and connects these junctions to a dynamic structural framework in the cell, the actin cytoskeleton.

Their strategy was to breed a mouse that has had the gene for alpha-catenin removed, or knocked-out, selectively in skin cells. The mouse embryo developed normally until its skin and hair begin to develop, around the 14th day of gestation. As these specialized cells, called keratinocytes, developed they did not make adherens junctions. The alpha-catenin needed to anchor the junction was missing.

Changes in the skin of the knockout mouse were dramatic and largely unexpected. The epidermis was thick and disorganized. The characteristic cell shapes of each of the skin's four layers were distorted, making it hard to tell where one layer ended and another began. The knockout keratinocytes of the skin showed a number of aberrant signs frequently associated with cancers.

"Loss of alpha-catenin alone seemed to cause at least a partial deregulation of cell-cycle control," said Fuchs. "While one normally sees dividing cells only in the innermost layer, we saw them in multiple cell layers, including the ones near the skin surface that are normally in the process of dying. Cells often had more than one nucleus, an indication of defects in cell division."

Many of the defects in the skin of these mice did not seem to be merely a consequence of defective intercellular adhesion. To demonstrate this, the researchers looked at skin in a mouse in which the molecule with the same ascribed function in the desmosome cell junction was missing. Though both animals showed severe defects in adhesion, the skin in the desmosome knockout did not show the changes in cell cycle control.

When keratinocytes from the alpha-catenin knock-out mice were grown in cell-culture, the cells proliferated more rapidly than their normal counterparts, and kept dividing, causing them to pile up on top of each other.

Even when the cells were grown under conditions where cell-cell junction formation was blocked in normal skin cells, the alpha-catenin knock-out skin cells still displayed many of the characteristics of pre-cancerous cells. These studies suggested that the loss of alpha-catenin resulted in defects in cell cycle control that could not merely be explained by alpha-catenin's role in intercellular adhesion. In search of this additional pathway, Valera Vasioukhin, a postdoctoral fellow in Fuchs' group, discovered that the alpha-catenin knockout cells had aberrantly activated the Ras-MAPK signaling pathway that controls cell growth, and which is deregulated in many cancers. Exactly how this happens is still not clear, but their studies indicate that the signaling pathway of a cell that responds to growth factors intersects the pathway that regulates intercellular junction formation. At the crossroads of this junction appears to be alpha-catenin.

Skin cells respond to changes in their immediate environment. When their bonds with their neighboring cells are broken through wounding, for example, they begin to proliferate (grow and divide) to repair the wound. During this process, the cells must keep the number of intercellular contacts to a minimum so that they are free to move in to the wound site.

"Alpha-catenin may be acting as a sensor--communicating changes in cell adhesion to the cell cycle regulatory machinery. This could account for why mutations of alpha-catenin can perturb the normal regulation of cell growth," said Fuchs.

"Taken together, our findings reveal a novel, hitherto unrecognized, importance of this protein that goes beyond its role in intercellular adhesion and which when dysfunctional, may play a key role in this form of skin cancer. "

Elaine Fuchs , Ph.D., is Amgen Professor of Molecular Genetics and Cell Biology and a Howard Hughes Investigator at the University of Chicago.

Additional authors of the paper include Valera Vasioukhin, Ph.D., Christoph Bauer, Ph.D., Linda Degenstein, and Bart Wise, Ph.D., of the University of Chicago.


Story Source:

The above story is based on materials provided by University Of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago Medical Center. "Disconnect Between Skin Cells Implicated In Common Skin Cancer." ScienceDaily. ScienceDaily, 23 February 2001. <www.sciencedaily.com/releases/2001/02/010223080145.htm>.
University Of Chicago Medical Center. (2001, February 23). Disconnect Between Skin Cells Implicated In Common Skin Cancer. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2001/02/010223080145.htm
University Of Chicago Medical Center. "Disconnect Between Skin Cells Implicated In Common Skin Cancer." ScienceDaily. www.sciencedaily.com/releases/2001/02/010223080145.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins