Featured Research

from universities, journals, and other organizations

Rare Meteorites Rekindle Controversy Over Birth Of The Solar System

Date:
March 5, 2001
Source:
Stanford University
Summary:
A new meteorite study is rekindling a scientific debate over the creation of our solar system. The study, published in the Mar. 2 issue of the journal Science, is based on the microscopic analysis of two rare meteorites recently discovered in Antarctica and Africa.

A new meteorite study is rekindling a scientific debate over the creation of our solar system. The study, published in the Mar. 2 issue of the journal Science, is based on the microscopic analysis of two rare meteorites recently discovered in Antarctica and Africa.

Most meteorites found on Earth are believed to be fragments of asteroids-ancient rocks and that formed during the creation of the solar system about 4.56 billion years ago. Thousands of asteroids still orbit the Sun in the asteroid belt between Mars and Jupiter, about 140 million miles from Earth.

“Asteroids and meteorites are solids that never got incorporated into the planets. These objects have survived, unchanged, for 4.56 billion years,” says physicist Anders Meibom, a postdoctoral fellow in the Stanford Department of Geological and Environmental Sciences who co-authored the Science study.

Chondrites and chondrules

Using electron microscopy and other laboratory techniques, Meibom and his colleagues conducted a detailed chemical analysis of two chondrites -– primitive meteorites made up of thousands of tiny round particles called chondrules.

“Chondrules are among the oldest objects in the solar system, dating back to the birth of the Sun,” says Meibom, “so when we look at chondrules, we’re actually looking at the very first steps towards the creation of our solar system.”

Meibom points out that most chondrules are made of silicates and metals that can only be produced at very high temperatures. Exactly how chondrules formed in the early solar system is a hotly debated topic among scientists.

“The conventional view,” notes Meibom, “is that chondrules started out as dust balls in the asteroid belt region some 4.56 billion years ago. Today, the asteroid belt is ultra-cold, but at that time, the temperature was just below 700 degrees Fahrenheit. The dust balls melted after they were zapped by quick bursts of lightning or shock waves, which briefly raised temperatures to about 3000 degrees F.”

According to this theory, as the melted particles cooled, they turned into millimeter-size chondrules, which eventually clumped together to form larger chondrites.

New theory

But in 1996, astronomer Frank Shu of the University of California proposed a different theory based in part on dramatic images from the Hubble Space Telescope, which – for the first time – allowed astronomers to witness the actual birth of new stars elsewhere in the Milky Way. The Hubble revealed that most young stars are created from enormous disks of whirling gas and dust.

As the disk contracts, it rotates faster and faster, funneling tons of interstellar dust toward the center, where temperatures reach 3000 degrees F or more -– hot enough to melt metal and vaporize most solids.

The rotating disk also produces enormous jets of gas capable of launching debris far into space at speeds of hundreds of miles per second. Using the Hubble images as a guide, Shu proposed that chondrules in our solar system were created near the hot central disk of the newly emerging Sun – not in the relatively cool asteroid belt hundreds of millions of miles away.

According to Shu, dust particles were melted by the Sun, then launched into space by powerful jets of gas and solar wind. While in flight, the molten particles solidified into spherical chondrules, some of which landed in the asteroid belt a few days later. Others ended up as the raw materials that formed the Earth, Mars and the rest of the planets in our solar system.

According to Meibom, the Mar. 2 chondrite study in Science magazine gives Shu’s version of chondrule creation a tremendous boost.

“Our findings demonstrate that Frank Shu’s ideas are not just some fantasy,” he notes. “We now have actual rocks that provide hard numbers, which fit very nicely into the general framework of Shu’s theory.”

Rare meteorites

Meibom and his colleagues based their study on two rare meteorite specimens -– HH 237, a grapefruit-size chondrite recovered from the Hammadah al Hamra region of north Africa; and QUE 94411, a walnut-size sample collected from the Queen Alexander mountain range in Antarctica.

“Most chondrites are only seven to ten percent metal by volume, but these two specimens are about 70 percent iron and nickel,” says Meibom. Microscopic analysis revealed that these iron-nickel compounds formed by condensation from hot gas when the temperature was around 2500 degrees F.

“Because HH 237 and QUE 94411 contain pristine samples of condensed iron and nickel, we were able to determine that these metal grains formed on a time scale of a few days. Furthermore, the newly created metal grains must have been transported out of their hot formation region very quickly.

“Shu’s model provides those kind of temperatures and time scales, and the jets certainly provide a way to kick the grains out to much colder regions of the solar nebula,” adds Meibom.

“The scenario we are suggesting is that of big blobs of hot gas rising up through the disk – almost like bubbles in boiling spaghetti sauce. As the gas bubbles rose and cooled, silicate and metal grains began to condense out of the gas. When these grains got close enough to the surface of the disk, they became trapped in the powerful jet streams. Days later, the particles arrived in the asteroid belt, where the relatively cold temperatures preserved them from destruction.”

These chondrites allow us to look at the very frontier of the solar system, concludes Meibom. “For the first time, we’re really building a bridge between what we observe in the meteorites and what astrophysicists like Shu are telling us.”

Frank Shu agrees.“In these two very special meteorites we finally have direct evidence that certain portions of rock had to move from some place very hot to some place very cold in a very short period of time,” comments Shu. “This is a very important study.”

Meibom’s other collaborators in the Science study are Alexander N. Krot and Klaus Keil of the University of Hawaii; Sara S. Russsell and Timothy E. Jeffries of the Natural History Museum in London; and Conel M. O’D. Alexander of the Carnegie Institution of Washington’s Department of Terrestrial Magnetism.

Related Web Sites:

http://www.psrd.hawaii.edu/Sept00/primitiveFeNi.html

http://www.cwru.edu/affil/ansmet/

http://hubble.esa.int


Story Source:

The above story is based on materials provided by Stanford University. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "Rare Meteorites Rekindle Controversy Over Birth Of The Solar System." ScienceDaily. ScienceDaily, 5 March 2001. <www.sciencedaily.com/releases/2001/03/010305072057.htm>.
Stanford University. (2001, March 5). Rare Meteorites Rekindle Controversy Over Birth Of The Solar System. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2001/03/010305072057.htm
Stanford University. "Rare Meteorites Rekindle Controversy Over Birth Of The Solar System." ScienceDaily. www.sciencedaily.com/releases/2001/03/010305072057.htm (accessed July 31, 2014).

Share This




More Space & Time News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) — The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) — Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) — Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins