Featured Research

from universities, journals, and other organizations

Computer Program Predicts Chances Of Brain-Cell Death From Stroke

Date:
April 10, 2001
Source:
American Heart Association
Summary:
A newly developed computer program predicts the chances of brain cells dying as the result of a stroke and may refine the use of brain-saving stroke drugs, according to research reported in the April issue of Stroke: Journal of the American Heart Association.

DALLAS, April 6 – A newly developed computer program predicts the chances of brain cells dying as the result of a stroke and may refine the use of brain-saving stroke drugs, according to research reported in the April issue of Stroke: Journal of the American Heart Association.

The computer software, which uses artificial intelligence techniques, very rapidly combines several new types of images obtained by magnetic resonance imaging (MRI) into a map of the brain allowing physicians to assess the risk of brain damage with high specificity and sensitivity. “That is a major accomplishment because previously it took 20 to 30 minutes to pour through all the MRI data and determine what it all meant,” says A. Gregory Sorensen, M.D., senior author of the report, associate professor of radiology at Harvard Medical School and associate director of the nuclear magnetic resonance center at Massachusetts General Hospital in Boston. “In treating stroke, every minute is crucial in limiting permanent brain damage.”

The current standard – computerized tomographic (CT) scan – uses X-rays to generate an image of the brain to determine whether a stroke was caused by bleeding of leaky or ruptured blood vessels. If the CT scan is negative for a bleeding (hemorrhagic) stroke, it is likely that it is ischemic i.e., caused by an obstructed blood vessel. Blood clots can be dissolved by tissue plasminogen activator (tPA). The drug, however, is only recommended for use within three hours of stroke onset.

“Neurologists know that, although the rule is three hours, some people given tPA at four hours get better, and some do poorly,” says Sorensen. “All neurologists struggle with the fact that they have these guidelines for groups of patients, but they are faced with treating a single patient. They want to know how they can adapt general guidelines to the specific patient in front of them.”

That is precisely what the computer program is meant to do. “Instead of having people wade through five or eight different MRI images, we simplified this into a single risk image,” he says. “This is particularly helpful now that these new types of MRI give us such large amounts of information.”

The computer breaks the advanced MRI brain scan into tiny, distinct cubes about one-tenth of an inch in diameter. Two key pieces of information are measured for each cube. One tells whether blood flow through vessels in the area is blocked. The other indicates whether the brain tissue is living or dying. Both these types of MRI scans are advanced techniques developed in the past few years.

Combining this and other data, the computer provides an estimate of the likelihood that an area of the brain will die if not treated – say zero in one place, 50 percent in another and perhaps 90 percent in still a third.

Such a map could help physicians answer important questions: Does the patient still have brain tissue at risk that ought to be treated? Is it too late for treatment? Or is there some tissue that is salvageable and some that is not?

The risk map is based on actual stroke cases and their outcomes. The researchers selected imaging and other data from 14 patients who had suffered a stroke in a major brain artery – the middle cerebral artery – and did not receive thrombolytic or neuroprotective therapy. “We actually knew what happened to these 14 patients, so we could train the program to be a good predictor,” Sorensen says. “We haven’t perfected it yet so that it is a bedside tool, but we are in the process of doing that.”

Information from additional patients has now been added to the program, and the team will add several hundred more. Although the software program has not yet been used as a guide for treating patients, the researchers have made predictive maps of people who have suffered a stroke. They have found the maps do a good job of predicting outcomes.

Currently, the program focuses on middle cerebral artery strokes. The researchers plan to expand it to encompass all strokes caused by blocked arteries.

They also see the technique as useful for testing the efficacy of new stroke drugs. Once the software’s predictive powers are proven highly accurate, Sorensen suggests that it will speed testing and reduce the number of patients needed in studies. Both could reduce the cost of developing new stroke drugs.

One thing is already evident from the early work with the predictive program, Sorensen says: People need to know and heed the symptoms of stroke. “The model tells us that there is a substantial amount of tissue that can be saved if the patient seeks medical help early.”

Co-authors are Ona Wu, M.S.; Walter J. Koroshetz, M.D.; Leif Ψstergaard, M.D., Ph.D.; Ferdinando S. Buonanno, M.D.; William A. Copen, M.D.; R. Gilberto Gonzalez, M.D., Ph.D.; Guy Rordorf, M.D.; Bruce R. Rosen, M.D., Ph.D.; Lee H. Schwamm, M.D.; and Robert M. Weisskoff, Ph.D.

The work was funded in part by the National Institutes of Health.


Story Source:

The above story is based on materials provided by American Heart Association. Note: Materials may be edited for content and length.


Cite This Page:

American Heart Association. "Computer Program Predicts Chances Of Brain-Cell Death From Stroke." ScienceDaily. ScienceDaily, 10 April 2001. <www.sciencedaily.com/releases/2001/04/010406074517.htm>.
American Heart Association. (2001, April 10). Computer Program Predicts Chances Of Brain-Cell Death From Stroke. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2001/04/010406074517.htm
American Heart Association. "Computer Program Predicts Chances Of Brain-Cell Death From Stroke." ScienceDaily. www.sciencedaily.com/releases/2001/04/010406074517.htm (accessed July 23, 2014).

Share This




More Mind & Brain News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) — Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com
Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Newsy (July 18, 2014) — A new study suggests that mixing alcohol with energy drinks makes you want to keep the party going. Video provided by Newsy
Powered by NewsLook.com
Pot Cooking Class Teaches Responsible Eating

Pot Cooking Class Teaches Responsible Eating

AP (July 18, 2014) — Following the nationwide trend of eased restrictions on marijuana use, pot edibles are growing in popularity. One Boston-area cooking class is teaching people how to eat pot responsibly. (July 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins