Featured Research

from universities, journals, and other organizations

Chemists Spin Materials To Improve Magnetic Resonance Data

Date:
May 31, 2001
Source:
Ohio State University
Summary:
An Ohio State University chemist and his colleagues are taking new, high-tech materials for a spin -- inside a nuclear magnetic resonance (NMR) instrument.

COLUMBUS, Ohio -- An Ohio State University chemist and his colleagues are taking new, high-tech materials for a spin -- inside a nuclear magnetic resonance (NMR) instrument.

The American, French And Danish researchers recently discovered that they can obtain more precise data about a material's atomic structure, and do it faster than ever before possible, if they spin the material at just the right speed inside the NMR instrument.

Philip Grandinetti, associate professor of chemistry at Ohio State, and his research partners have named their new technique FASTER, short for "FAst Spinning gives Transfer Enhancement at Rotary resonance."

FASTER eliminates the signal interference that plagues traditional techniques for studying materials using NMR.

In a recent issue of the Journal of Chemical Physics, the chemists reported that spinning samples at speeds of up to 30,000 cycles per second can, in many cases, boost the signal strength of the NMR measurements more than ten times over."This is a big advance for people who want to study the atomic level structure of almost any solid material -- ceramics, plastics, glasses, or catalysts," Grandinetti said. "Even for peptides, proteins, or DNA, FASTER could shorten the time necessary for studying a substance from weeks to mere hours."

Grandinetti worked with three researchers at the French National Center for Scientific Research (CNRS) in Orleans: Thomas Vosegaard, formerly a postdoctoral fellow at CNRS, who is now a research assistant professor in the Laboratory for Biomolecular NMR Spectroscopy at the University of Aarhus, Denmark; Pierre Florian, formerly a postdoctoral fellow at Ohio State, who is now a research associate at CRNS; and Dominique Massiot, who directs the CNRS Center for High-Temperature Materials Research.

NMR works by tuning into the radio waves emitted by atoms within materials, Grandinetti explained.

"Just as astronomers tune into the radio waves emitted by objects in outer space, we tune into radio waves emitted from inner space," he said.

Grandinetti likened the interference that confounds NMR signals to interference between stations on an FM radio. When a station is far away, music from other stations can drown it out.

In the case of atoms and molecules, the radio information that is lost concerns the environment of the atoms. That's because each atom emits radio waves at a particular frequency, depending on the type of atoms that surround them.

"The problem is, when we tune in our NMR 'radios,' we receive a lot of static," Grandinetti said. "We try our best to reduce the noise, but these tiny signals from atomic nuclei are weak to begin with, so it's a battle to get a good signal."

The idea of spinning materials in an NMR instrument to improve the signal isn't new in itself. The original technique, known as magic-angle spinning (MAS), spins materials at a certain angle with respect to the NMR's magnetic field. Unfortunately, MAS doesn't work for 70 percent of known elements.

For these elements, including oxygen, aluminum, and sodium, the rules of quantum mechanics prevent certain nuclear transitions from taking place, and it is those transitions that would reveal a clearer NMR signal.

Typically, researchers must average the test results for these elements over several weeks to reduce the noise. They also must employ very expensive high-power amplifiers to boost the magnetic field.

Performing their experiments on commercially available equipment, Grandinetti and his partners used FASTER to produce the same results in a matter of hours, instead of weeks -- and without a high-power amplifier.

Any NMR machine with an MAS probe can use FASTER, Grandinetti said. High-power, one-kilowatt amplifiers typically cost about $20,000, but FASTER requires an investment of only a few thousand dollars for a low-power amplifier.

The technique could be used by geologists, biologists, chemists, and physicists, as well as materials scientists, since it works for any solid substance -- including minerals, biopolymers, enzymes, and membranes.

Grandinetti plans to apply this advance to several different projects; one involves a study of the complex geochemistry that is occurring under nuclear waste storage tanks at the Department of Energy site in Hanford, Washington. Millions of gallons of radioactive waste from decades of nuclear weapons production are stored at the site, in tanks that are now leaking into the ground.

"It's an environmental nightmare," Grandinetti said, "and we desperately need a remediation strategy based on an accurate understanding of the chemistry taking place under these tanks."

Advances such as FASTER will help scientists characterize the minerals forming under these tanks, and understand their ability to immobilize materials leaking out, he added.

The National Science Foundation and the Department of Energy supported Grandinetti's part in this research.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Chemists Spin Materials To Improve Magnetic Resonance Data." ScienceDaily. ScienceDaily, 31 May 2001. <www.sciencedaily.com/releases/2001/05/010529071221.htm>.
Ohio State University. (2001, May 31). Chemists Spin Materials To Improve Magnetic Resonance Data. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2001/05/010529071221.htm
Ohio State University. "Chemists Spin Materials To Improve Magnetic Resonance Data." ScienceDaily. www.sciencedaily.com/releases/2001/05/010529071221.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins