Featured Research

from universities, journals, and other organizations

Chemists Spin Materials To Improve Magnetic Resonance Data

Date:
May 31, 2001
Source:
Ohio State University
Summary:
An Ohio State University chemist and his colleagues are taking new, high-tech materials for a spin -- inside a nuclear magnetic resonance (NMR) instrument.

COLUMBUS, Ohio -- An Ohio State University chemist and his colleagues are taking new, high-tech materials for a spin -- inside a nuclear magnetic resonance (NMR) instrument.

The American, French And Danish researchers recently discovered that they can obtain more precise data about a material's atomic structure, and do it faster than ever before possible, if they spin the material at just the right speed inside the NMR instrument.

Philip Grandinetti, associate professor of chemistry at Ohio State, and his research partners have named their new technique FASTER, short for "FAst Spinning gives Transfer Enhancement at Rotary resonance."

FASTER eliminates the signal interference that plagues traditional techniques for studying materials using NMR.

In a recent issue of the Journal of Chemical Physics, the chemists reported that spinning samples at speeds of up to 30,000 cycles per second can, in many cases, boost the signal strength of the NMR measurements more than ten times over."This is a big advance for people who want to study the atomic level structure of almost any solid material -- ceramics, plastics, glasses, or catalysts," Grandinetti said. "Even for peptides, proteins, or DNA, FASTER could shorten the time necessary for studying a substance from weeks to mere hours."

Grandinetti worked with three researchers at the French National Center for Scientific Research (CNRS) in Orleans: Thomas Vosegaard, formerly a postdoctoral fellow at CNRS, who is now a research assistant professor in the Laboratory for Biomolecular NMR Spectroscopy at the University of Aarhus, Denmark; Pierre Florian, formerly a postdoctoral fellow at Ohio State, who is now a research associate at CRNS; and Dominique Massiot, who directs the CNRS Center for High-Temperature Materials Research.

NMR works by tuning into the radio waves emitted by atoms within materials, Grandinetti explained.

"Just as astronomers tune into the radio waves emitted by objects in outer space, we tune into radio waves emitted from inner space," he said.

Grandinetti likened the interference that confounds NMR signals to interference between stations on an FM radio. When a station is far away, music from other stations can drown it out.

In the case of atoms and molecules, the radio information that is lost concerns the environment of the atoms. That's because each atom emits radio waves at a particular frequency, depending on the type of atoms that surround them.

"The problem is, when we tune in our NMR 'radios,' we receive a lot of static," Grandinetti said. "We try our best to reduce the noise, but these tiny signals from atomic nuclei are weak to begin with, so it's a battle to get a good signal."

The idea of spinning materials in an NMR instrument to improve the signal isn't new in itself. The original technique, known as magic-angle spinning (MAS), spins materials at a certain angle with respect to the NMR's magnetic field. Unfortunately, MAS doesn't work for 70 percent of known elements.

For these elements, including oxygen, aluminum, and sodium, the rules of quantum mechanics prevent certain nuclear transitions from taking place, and it is those transitions that would reveal a clearer NMR signal.

Typically, researchers must average the test results for these elements over several weeks to reduce the noise. They also must employ very expensive high-power amplifiers to boost the magnetic field.

Performing their experiments on commercially available equipment, Grandinetti and his partners used FASTER to produce the same results in a matter of hours, instead of weeks -- and without a high-power amplifier.

Any NMR machine with an MAS probe can use FASTER, Grandinetti said. High-power, one-kilowatt amplifiers typically cost about $20,000, but FASTER requires an investment of only a few thousand dollars for a low-power amplifier.

The technique could be used by geologists, biologists, chemists, and physicists, as well as materials scientists, since it works for any solid substance -- including minerals, biopolymers, enzymes, and membranes.

Grandinetti plans to apply this advance to several different projects; one involves a study of the complex geochemistry that is occurring under nuclear waste storage tanks at the Department of Energy site in Hanford, Washington. Millions of gallons of radioactive waste from decades of nuclear weapons production are stored at the site, in tanks that are now leaking into the ground.

"It's an environmental nightmare," Grandinetti said, "and we desperately need a remediation strategy based on an accurate understanding of the chemistry taking place under these tanks."

Advances such as FASTER will help scientists characterize the minerals forming under these tanks, and understand their ability to immobilize materials leaking out, he added.

The National Science Foundation and the Department of Energy supported Grandinetti's part in this research.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Chemists Spin Materials To Improve Magnetic Resonance Data." ScienceDaily. ScienceDaily, 31 May 2001. <www.sciencedaily.com/releases/2001/05/010529071221.htm>.
Ohio State University. (2001, May 31). Chemists Spin Materials To Improve Magnetic Resonance Data. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2001/05/010529071221.htm
Ohio State University. "Chemists Spin Materials To Improve Magnetic Resonance Data." ScienceDaily. www.sciencedaily.com/releases/2001/05/010529071221.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins