Featured Research

from universities, journals, and other organizations

Never-Before-Seen Look Deep Inside Cancerous Tumors

Date:
July 6, 2001
Source:
Massachusetts General Hospital
Summary:
A powerful new with high resolution, three-dimensional imaging tool is providing researchers with never-before-seen views of what goes on deep within a living tumor. Scientists at Massachusetts General Hospital (MGH) are using multiphoton laser scanning microscopy to visualize individual cells, where they can monitor gene expression, therapy effectiveness and tumor cells’ interactions with normal cells. The work published in this week’s Nature Medicine demonstrates that the technique could be adapted to measure a wide range of physiological parameters.

BOSTON — A powerful new with high resolution, three-dimensional imaging tool is providing researchers with never-before-seen views of what goes on deep within a living tumor. Scientists at Massachusetts General Hospital (MGH) are using multiphoton laser scanning microscopy to visualize individual cells, where they can monitor gene expression, therapy effectiveness and tumor cells’ interactions with normal cells. The work published in this week’s Nature Medicine demonstrates that the technique could be adapted to measure a wide range of physiological parameters.

Since the researchers use a living mouse model, they can perform a variety of experiments and take numerous measurements over time. "We can figure out what’s going on under the surface of the tumor without disturbing the tumor itself," says principal investigator Rakesh Jain, PhD, of the MGH Department of Radiation Oncology.

Current imaging techniques do not have the same combination of depth or resolution. "This new technology gives us the ability to look deep inside the tissues of living animals," says lead author Edward Brown, PhD, also of the MGH Department of Radiation Oncology.

The MGH scientists first looked at gene expression at the tumor site, focusing on the angiogenesis-promoting gene, VEGF. Cancer cells can coax nearby normal cells to produce VEGF in order to recruit nourishing blood vessels to the tumor. By imaging individual cells in and around the tumor, the MGH team could see exactly which cells turned on the gene. They could also visualize blood vessels deep within a cancerous mass, and they hope this information will offer clues to the mechanism of tumor angiogenesis. "There’s a dance between the cancer cells and the host cells. We’ll now be able to see how that occurs," says Jain.

The scientists were also able to use their technique to track individual cell populations within a tumor. Some cancer cells develop a hardiness that allows them to survive in areas of very low oxygen. The MGH team could visualize these cells as they migrated to the center of the tumor mass, far away from oxygen-rich blood vessels. Since cancer therapies are generally administered through the blood stream, these cells might also be inaccessible to conventional treatments. Jain says that innovative strategies may need to be devised to target these cells.

The microscopic technique was also used by Jain and his team to monitor the delivery of cancer treatments. They saw that therapies tend to flow out of a blood vessel and into nearby tissues, but only at certain blood vessel locations. The scientists could see that there are regions of a tumor that may never be exposed to a drug that’s given systemically. This has important implications for developing strategies to target the whole tumor.

"In the future, this technology will apply to a lot of exciting areas," says Brown. "There’s three-dimensional resolution, a great depth of penetration, and you can look at individual cells." Brown and his colleagues are now focusing on understanding the detailed mechanisms behind their in-depth observations.

The Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $300 million and major research centers in AIDS, the neurosciences, cardiovascular research, cancer, cutaneous biology, transplantation biology and photo-medicine. In 1994, the MGH joined with Brigham and Women’s Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Never-Before-Seen Look Deep Inside Cancerous Tumors." ScienceDaily. ScienceDaily, 6 July 2001. <www.sciencedaily.com/releases/2001/07/010706075857.htm>.
Massachusetts General Hospital. (2001, July 6). Never-Before-Seen Look Deep Inside Cancerous Tumors. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2001/07/010706075857.htm
Massachusetts General Hospital. "Never-Before-Seen Look Deep Inside Cancerous Tumors." ScienceDaily. www.sciencedaily.com/releases/2001/07/010706075857.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins