Featured Research

from universities, journals, and other organizations

"The Dish" Tests Einstein's Warped Space

Date:
July 18, 2001
Source:
CSIRO Australia
Summary:
In the most precise astrophysics experiment ever made, Australian and U.S. astronomers have used Australia's CSIRO Parkes radio telescope to measure the distortion of space-time near a star 450 light-years (more than 4 000 million million kilometres) from Earth. Their results, confirming Einstein's general theory of relativity, are published in the July 12 issue of the journal "Nature".

In the most precise astrophysics experiment ever made, Australian and U.S. astronomers have used Australia's CSIRO Parkes radio telescope to measure the distortion of space-time near a star 450 light-years (more than 4 000 million million kilometres) from Earth. Their results, confirming Einstein's general theory of relativity, are published in the July 12 issue of the journal "Nature".

The researchers were Mr Willem van Straten and Professor Matthew Bailes (Swinburne University of Technology, Melbourne); Professor Shrinivas R. Kulkarni, Dr Stuart Anderson, and Dr Matthew Britton (California Institute of Technology); and Dr Richard N. Manchester and Mr John Sarkissian (CSIRO Australia Telescope National Facility, a division of Australia's national research organization, CSIRO).

The research rests on the properties of one of Nature's most bizarre objects: a 'pulsar' called J0437-4715. A pulsar is a star made of highly compressed matter. It spins, and in spinning gives off a stream of radio pulses. J0437-4715 is one of the brightest and closest pulsars of its kind and produces more than 170 pulses a second. It waltzes through space with a companion - an old, shrunken star called a white dwarf.

The astronomers have been able to measure when J0437-4715's pulses reach us on Earth to within a tenth of a millionth of a second [100 nanoseconds], thanks to sophisticated instruments developed by Caltech, leading-edge computing at Swinburne University and the large collecting area of the Parkes telescope.

This precise timing, and the closeness of the pulsar, has allowed the astronomers to determine exactly how the pulsar's orbit is oriented in space - the first time this has been done.

Our right and left eyes see slightly different views of the world because they are separated by a few centimetres. In the same way, two views of the pulsar system made six months apart look slightly different, because the Earth has moved from one side of the Sun to the other. The effect is called parallax.

In the case of pulsar J0437-4715, the difference in the two views is minuscule - about four millionths of a degree. But it's enough to allow the astronomers to construct a 3D model of how the pulsar orbits in space.

To do so, however, PhD student van Straten had to process more than 50 000 Gigabytes of data - as much as would fit on 77 000 CD-ROMs, or a stack 119 metres high.

Having worked out the orbit, the astronomers were able to test a subtle effect predicted by Einstein's general theory of relativity. A massive object distorts the space-time around it. In the pulsar system, the pulsar's radio waves travel through the curved space-time around its white dwarf companion, and arrive on Earth a little later than if they had travelled through undistorted space-time. The effect, called the Shapiro delay, was first proposed in 1964 by Irwin I. Shapiro, now Director of the Smithsonian Astrophysical Observatory.

The data clearly showed the predicted delay, making this the first test of general relativity in which the geometry of the system has been used to predict a relativistic effect. An earlier test of a binary pulsar system, made by Professors Joseph H. Taylor (Princeton University) and Joel M. Weisberg (now Carleton College), used two general relativistic effects to predict the value of a third, and so was a test of the self-consistency of the theory. However, the observations of the pulsar in that system were not precise enough for the geometry of its orbit to be checked.

"The precision of the current data is so good that we are now aiming to use the pulsar to search for subtle ripples in the space-time continuum", says Professor Bailes. Astronomers think that such ripples would be produced during the birth of the Universe or when ultra-massive black holes coalesce. To search for them, experimenters are now designing and building the next generation of pulsar instrumentation and supercomputers.

The pulsar team has a long history in the discovery and timing of radio pulsars. In 1982, Kulkarni along with Professor D. C. Backer of the University of California, Berkeley, discovered the first ultra-fast ('millisecond pulsar') which led to a series of surveys in search of similar pulsars. One such survey, made with the Parkes radio-telescope by a team including Manchester and Bailes, led to the discovery of PSR J0437-4715 in 1992.

This pulsar, with a period of 5.757,451,831,072,007 milliseconds, will gain or lose no more than 1 millisecond over a period of one hundred thousand years. "The precision of millisecond pulsars is comparable to the atomic clocks that are used to keep time. It has long been recognized that these natural clocks can be exploited for a number of tests in basic physics," says Professor Kulkarni.

The Swinburne group has dedicated an entire supercomputer, one of Australia's largest, to keep pace with the terabytes of data streaming from Parkes.


Story Source:

The above story is based on materials provided by CSIRO Australia. Note: Materials may be edited for content and length.


Cite This Page:

CSIRO Australia. ""The Dish" Tests Einstein's Warped Space." ScienceDaily. ScienceDaily, 18 July 2001. <www.sciencedaily.com/releases/2001/07/010717080309.htm>.
CSIRO Australia. (2001, July 18). "The Dish" Tests Einstein's Warped Space. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2001/07/010717080309.htm
CSIRO Australia. ""The Dish" Tests Einstein's Warped Space." ScienceDaily. www.sciencedaily.com/releases/2001/07/010717080309.htm (accessed July 30, 2014).

Share This




More Space & Time News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins